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ABSTRACT

Near-Optimal Non-Truthful Mechanism Design

Samuel Taggart

This dissertation considers mechanism design and redesign for markets like Internet

advertising where many frequent, small transactions are organized by a principal. Mech-

anisms for these markets rarely have truthtelling equilibria. In contrast to previous work

which analyzes existing mechanisms, we initiate the study of non-truthful mechanisms

explicitly from a design perspective. We identify a family of winner-pays-bid mechanisms

that exhibit three properties. First, equilibria in these mechanisms are simple. Second,

the mechanisms’ parameters are easily reoptimized from the bid data that the mechanism

generates. Third, the performance of mechanisms in the family is near the optimal perfor-

mance possible by any mechanism (not necessarily within the family). Our mechanisms

are based on batching across multiple iterations of an auction environment, and our ap-

proximation bound is asymptotically optimal, with loss inversely proportional to the cube

root of the number of iterations batched. Our analysis methods are of broader interest

in mechanism design and, for example, we also use them to give new sample complexity

bounds for mechanism design in general single-dimensional agent environments.
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CHAPTER 1

Introduction

This thesis considers the design of algorithms for allocating a resource to strategic

agents, i.e. mechanisms. The classical theory of mechanism design focuses on mechanisms

in which agents are incentivized report their values for allocation truthfully. The design of

such truthful mechanisms is well-understood. Mechanisms used in practice, however, are

often not truthful. Common examples include the ubiquitous first-price auction (often

implemented as a descending-price auction) and the auctions used to sell advertising

online. These non-truthful mechanisms which appear in practice have been well-studied,

and much is known about their performance under a broad range of assumptions. The

proliferation of such non-truthful mechanisms, however, suggests that there is need not

just for analysis, but for design of mechanisms which both perform well and conform to

the practical needs that lead to the use of non-truthful mechanisms in the first place.

This thesis works towards such a theory for non-truthful mechanism design and infer-

ence for mechanism redesign in markets like Internet advertising where many frequent,

small transactions are organized by a principal. In these environments bidders place bids

in advance and, as goods become available, the bids of the relevant bidders are entered

into an auction to determine the allocation of goods. Such settings are among those

where market mechanisms do not have truthtelling equilibria and, thus, it is challenging

to reason about their design and, when bid data is available, their redesign. Our theory

therefore focuses on the canonical model of mechanism design, the independent private
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value model, under the additional constraint that mechanisms must satisfy the constraints

of practical applications with non-truthful semantics such as winner-pays-bid/first-price.

1.1. Why Non-Truthful Mechanisms?

As discussed, much of the theory of mechanism design is developed via the revela-

tion principle (Myerson, 1981) which observes that existence of a mechanism with good

equilibrium implies the existence of one with a good truthtelling equilibrium. There are

many practical constraints, however, that prevent mechanisms with truthtelling equilib-

rium from being adopted (see Ausubel and Milgrom, 2006). Practitioners instead often

employ non-revelation mechanisms such as those with winner-pays-bid (i.e., first-price)

semantics: agents submit bids to the mechanisms, winners are selected from bids, and

winners pay the bids they submitted. Such mechanisms tend to be more robust to risk

averse bidders (e.g. Ausubel and Milgrom, 2006). Moreover, winner-pays-bid mechanisms

are transparent - bidders know exactly what they will pay on winning. Computation

of payments is trivial for the mechanism; thus winner-pays-bid mechanisms also essen-

tially offload the more complicated payment computation that takes place in truthful

mechanisms to the agents instead, which is advantageous when transactions are frequent.

1.2. Philosophy: Non-Revelation Mechanism Design

The non-truthful mechanisms that are common in practice have been well-studied.

For example, Kirkegaard (2009) and Kaplan and Zamir (2012) give detailed characteri-

zations of the equilibria of first-price auctions. More recently, literature on the price of

anarchy has sought to compare the social welfare and revenue of commonly used non-

truthful mechanisms to those of the optimal mechanisms. (See, for example, Syrgkanis
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and Tardos, 2013; Hartline et al., 2014) Such results provide a deeper understanding of

existing mechanisms, but do little to guide the design of non-truthful mechanisms which

improve on those in use.

We note here some partial approaches to the problem of non-truthful mechanism

design. For position auctions, which model the sale of advertising space, Chawla et al.

(2014, 2016) develop econometric inference tools which can then be used to decide how

to reparametrize rank-based auctions for environments such as those encountered in the

sale of online advertising. Their approach does not design new mechanisms, however. For

the sale of multiple heterogeneous items, Devanur et al. (2015) design new non-truthful

mechanisms with the goal of producing auctions with simple strategy spaces simplify

bidders’ problem of learning optimal strategies. These mechanisms have the property

that even when agents have complicated preferences for sets of items, a single first-price

bid, chosen in equilibrium, suffices to capture the information necessary to allocate items

approximately efficiently.

This thesis attempts to initiate the development of a theoretical framework to aid in

the systematic design of non-truthful mechanisms. We do so in a special case of the single-

dimensional, independent private values model for mechanism design, in which the seller

has access to many transactions at once, and may make decisions for these transactions

jointly. In this model, we highlight some of the theoretical properties which complicate

or facilitate design and inference for non-truthful mechanisms.

In what follows, we identify a family of practical, non-revelation mechanisms for gen-

eral environments, including single-minded combinatorial auctions, that exhibit three
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properties. First, these mechanisms use limited distributional information to obtain per-

formance near that of the optimal mechanism, a 1 + ε approximation for any desired ε.

Second, these mechanisms can be easily parameterized and reoptimized from the equi-

librium bid data they generate. Mechanisms from such a family can be tuned as fun-

damentals of the market evolve. Third, the equilibria in these mechanisms have a focal

equilibrium which is simple and are therefore easy to analyze.

The iterated population model expands on a standard interpretation of the indepen-

dent private value model. In this model there are a collection of populations, and each

population consists of a continuum of bidders which induces a distribution of values. The

strategies of these bidders induce a distribution of bids. In each iteration, one bidder

from each population is drawn independently and uniformly at random to participate in

a mechanism. For example, the mechanism might be the first price auction where the

highest bidder wins and pays her bid. Notice that a single stage of this iterated population

model is equivalent to the standard independent private value model that is pervasive in

auction theory. Our model simply is an explicit extension of this standard model to an

iterated environment.

1.3. Case Study: Single-Item Auctions

The sale of a single item by winner-pays-bid or all-pay auctions has been studied ex-

tensively. When all buyers’ values are identically distributed, Chawla and Hartline (2013)

show that Bayes-Nash equilibrium of the first-price auction is unique and symmetric. In

this equilibrium, the highest-valued buyer wins with probability 1. Hence, equilibrium is

efficient. The same holds true for all-pay auctions as well.
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When agents’ values are asymmetrically distributed, the strong welfare guarantees

of Chawla and Hartline (2013) break down. The inefficiency of asymmetric first-price

equilibria has long been known (Vickrey, 1961). Syrgkanis and Tardos (2013) show that

this inefficiency is bounded: in every BNE of the first-price auction, the social welfare is

within a (1 − 1/e)-factor of optimal. While this constant-approximation is often framed

positively, there are many applications where a potential loss of over 1/3 of the optimal

welfare is unacceptable. While this bound is not known to be tight, there are examples

where the first-price auction is as much as a factor of 1.15 away from optimal (Hartline

et al., 2014).

1.4. Case Study: Single-Minded Combinatorial Auctions

In more general feasibility environments, there is an even stronger contrast between

settings where non-truthful mechanisms perform well, and those where they fail. Consider

well-studied single-minded combinatorial auction environment. There are m items for

sale, and the bidders from population i desire some publicly-known bundle Si. A bidder

i obtains value vi if they receive all the items in Si, and 0 otherwise. A winner-pays-bid

mechanism chooses an allocation (such as “allocate the feasible set maximizing the sum

of bids”) and charges winners their bids.

For the general single-minded combinatorial setting, i.e., with multiple items and bid-

ders desire distinct bundles of items, Bayes-Nash equilibrium welfare can be even worse.

The highest-bids-win winner-pays-bid mechanism allocates to the feasible subset of bids

with the highest total. Computational issues aside, the equilibria of the winner-pays-bid

mechanism with this rule can have welfare as far as a factor of m away from optimal.
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The literature has considered also a greedy winner-pays-bid mechanism, where bidders

are allocated greedily based on their bid weighted by
√

1/|Si|. The equilibrium welfare of

this greedy mechanism can be as low as a
√
m-factor of the optimal welfare (Borodin and

Lucier, 2010). Both of these mechanisms are unparameterized by distributional knowl-

edge; Dütting and Kesselheim (2015) prove that no unparameterized mechanism can be

shown to obtain better than a
√
m fraction of the optimal welfare via the standard proof

method. These lower bounds apply to any algorithm, regardless of computational power.

In fact, inefficiencies from non-truthful equilibrium are orthogonal to computational con-

siderations - Dütting and Kesselheim (2015) also show that for the special case where

bundles form an interval scheduling problem,
√
m is still the best guarantee provable

for a deterministic mechanism using standard methods. For randomized algorithms, the

lower bound weakens to the still super-constant logm/ log logm. This example highlights

that in the absence of symmetry or distributional knowledge, non-truthful mechanisms

are limited in their capabilities.

1.5. Case Study: IID Position Auctions

Another generalization of the single-item environment is the position environment.

Popularized by Varian (2007) and Edelman et al. (2005) to model auctions for online

advertisements, position auctions exemplify a tractable setting for non-truthful mecha-

nism design. A position auction environment consists of n slots with position weights

w1 ≥ . . . ≥ wn. Slots correspond to locations for an advertisment on a webpage. The

weight wi of slot i corresponds to the probability a visitor will click an ad in position i.

Such a problem is IID if all agents have the same value distribution.
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In these settings, first-price and all-pay auctions have desirable equilibria. In particu-

lar, Chawla and Hartline (2013) consider the natural first-price or all-pay position auction,

which solicits bids, ranks agents by bid, and assigns agents to slots assortatively. When

agents’ values distributions are identical, they show that first-price and all-pay auctions

have a unique Bayes-Nash equilibrium. Moreover, this equilibrium is the efficient one:

the highest-valued agents receive the highest slots.

While the single-minded combinatorial auction environment was highly asymmetrical

in what subsets of agents were allowed to be served, the feasibility structure in a po-

sition environment is completely symmetrical; an allocation is simply a permutation of

agents. Moreover, because bidders have identical value distributions, winner-pays-bid auc-

tions in position environments avoid even the constant-factor loss of the asymmetrically-

distributed single-item setting. These comparisons suggest broader design ideas that we

will apply in this thesis.

1.6. Case Study: “Un-Revelation” Mechanisms

When the value distributions of the bidders are known, there are winner-pays-bid

mechanisms that achieve optimal welfare or revenue in equilibrium, even in highly asym-

metrical settings such as the single-minded combinatorial auction. Identifying such a

mechanism requires a delicate undoing of the revelation principle, which we outline below.

The resulting mechanism is complex and parameterized by details of the value distribu-

tions. As such, these “un-revelation” mechanisms are more of a theoretical novelty than

a practical suggestion.
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We can construct a good first-price or all-pay mechanism for an arbitrary single-

dimensional environment such as the single-minded combinatorial auction by inverting

the payment function of an existing truthful mechanism. This construction applies to any

revelation mechanismM. For concreteness, imagine a applying this approach to a single-

minded combinatorial auction problem where M is the Vickrey-Clarke-Groves (VCG)

mechanism. We give the all-pay version of the construction which is slightly simpler, but

exhibits the same issues.

Definition 1. The all-pay unrevelation mechanism for a revelation mechanismM is:

(1) For each agent i and value vi, calculate si(vi) as the expected payment inM when

the agent’s value is vi and other agents’ values are drawn from the distribution.

(2) For each agent i, given bid bi in the un-revelation mechanism, calculate the agent’s

value as vi = s−1
i (bi).

(3) Serve the agents who are served by M on values v = (v1, . . . , vn); all agents pay

their bids.

The characterization of Bayes-Nash equilibrium (Theorem 2 in Section 2.1) implies

that si is the strategy that agents will employ in equilibrium of the constructed all-pay

mechanism. Thus, the all-pay unrevelation mechanism has the same equilibrium outcome.

From this definition we can see why symmetric and ordinal environments (i.e., IID

position environments) are special. For these environments all agents will have the same

strategy function, this strategy function will order higher valued bidders higher (by mono-

tonicity), and the ordinal environment then implies that all that is needed to select an
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outcome is the order of values not their cardinal values. Thus, the mechanism simplifies

to simply ordering the bids and the strategy function does not need to be calculated.

Even absent computational issues in estimating the strategy functions so as to imple-

ment this mechanism, it is clear that very detailed distributional information is needed to

run the unrevelation mechanism. Moreover, the resulting outcomes may be very sensitive

to small errors with the inversion of the strategy function. This unrevelation mechanism

is not to be considered practical.

1.7. Approach and Results

In this work we identify a family of practical, non-revelation mechanisms for general

environments, including single-minded combinatorial auctions, that exhibit three proper-

ties. First, these mechanisms use limited distributional information to obtain performance

near that of the optimal mechanism, a 1 + ε approximation for any desired ε. Second,

these mechanisms can be easily parameterized and reoptimized from the equilibrium bid

data they generate. Mechanisms from such a family can be tuned as fundamentals of the

market evolve. Third, the equilibria in these mechanisms have a simple focal equilibrium,

and are therefore easy to analyze.

We work in the iterated population model, which expands on a standard interpretation

of the independent private value model. In this model there are a collection of populations,

and each population consists of a continuum of bidders which induces a distribution of

values. The strategies of these bidders induce a distribution of bids. In each iteration,

one bidder from each population is drawn independently and uniformly at random to

participate in a mechanism. For example, the mechanism might be the first price auction
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where the highest bidder wins and pays her bid. Notice that a single stage of this iterated

population model is equivalent to the standard independent private value model that is

pervasive in auction theory. Our model simply is an explicit extension of this standard

model to an iterated environment.

Our approach is based on linking decisions for bidders from each population across the

iterations of the stage environment. This linking of decisions replaces competition between

bidders in distinct populations, which is asymmetric, with competition between bidders

in the same population, which is symmetric. This linking is achieved by considering

the family of mechanisms that determine their outcome only from the rank of a bidder

among others from the same population. Such a mechanism cannot know a bidder’s value

exactly but has a posterior distribution over values, obtained by conditioning on the

bidder’s rank. The optimal mechanism in this family optimizes as if the bidders’ values

were equal to the expectation of their respective posterior distributions given their ranks.

Our approximation result then shows that little welfare (or revenue) is lost by optimizing

with respect to these conditional expected values rather than the exact values. When

there are n populations and decisions are linked across T iterations, the loss is bounded

by a O( 3
√
n/T ) fraction of the optimal welfare (or revenue).

To prove our linking result, we build up a series of natural approximation results which

we believe to be of independent interest. In particular, to understand the performance of

mechanisms from data in non-truthful settings, we first consider the problem of learning

good truthful mechanisms. This study leads us to a new sample complexity result for

general feasibility environments. For regular value distributions, using Θ(n5ε−8) sampled

profiles from the true value distributions, we give a computationally efficient procedure
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to obtain a mechanism with expected revenue at least a (1− ε)-fraction of optimal. Our

results hold for arbitrary feasibility environments. Our procedure estimates a coarse ap-

proximation to each agent’s revenue curve, and maximizes ironed virtual values according

to this estimate.

1.8. Related Work

1.8.1. Nontruthful Mechanisms

Many previous papers have studied the welfare and revenue properties of non-truthful

mechanisms, or their price of anarchy. Syrgkanis and Tardos (2013) give worst-case

welfare approximation bounds for a large family of non-truthful auctions, including first-

price and all-pay auctions. Borodin and Lucier (2010) derive similar worst-case results

for winner-pays-bid mechanisms based on greedy allocation rules, and Devanur et al.

(2015) design non-truthful mechanisms whose equilibria are simple to learn via no-regret

algorithms. Moreover, Hartline et al. (2014) extend many of these welfare analyses to

the revenue objective when there is sufficient competition or reserve prices. Many of

these proofs are via the smoothness framework of Roughgarden (2009). Unfortunately,

Dütting and Kesselheim (2015) prove limits on smoothness-based welfare bounds for en-

vironments such as the single-minded combinatorial auction. All of these mechanisms are

unparameterized by distributional knowledge (except for the reserve price result). We get

asymptotically welfare optimal mechanisms – bypassing this and other lower bounds – by

allowing the designer to better adapt the stage mechanism based on bids in other stages.
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1.8.2. Mechanism Design from Data

The problem of non-truthful mechanism design from data is in many ways analogous to

the literature on sample complexity in mechanism design. Here, the designer has sample

access to bidders’ true value distributions, and seeks to design a truthful mechanism with

high expected revenue with only these samples from the true distribution. This problem

was initiated by Elkind (2007) and Balcan et al. (2008). In so far as this work solves this

problem in the more complicated non-truthful setting (as we have samples from the bid

distribution not the value distribution), our results have implications on that literature.

More recently, this question was studied for single-item auctions by Cole and Rough-

garden (2014) and extended to downward-closed environments by Devanur et al. (2016).

The latter paper shows that the sufficient number of samples is Õ(n2ε−4). Our meth-

ods extend this result by relaxing downward closure, but the sample complexity bound

worsens to Õ(n5ε−8). All of these mechanisms are computationally tractable and apply

to unbounded but regular distributions (see Section 2.1 for a definition of regularity).

Morgenstern and Roughgarden (2015) have previously considered sample complexity

for bounded distributions, applying tools from computational learning theory to auction

design. They identify a family of mechanisms which has low representation error (for

every distribution, there is a mechanism in the family that is near-optimal) and low

generalization error (with high probability, the revenue of mechanisms in the family on

a sample is close to their true expected revenue). Consequently, one need only solve the

empirical revenue maximization problem of finding the mechanism in the family with

they highest revenue on the sample. Unfortunately, identifying an optimal mechanism
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for the sample can be computationally hard, even for simple environments like single-

dimensional matching markets (e.g. Briest (2008)). Gonczarowski and Nisan (2017)

subsequently provided a computationally efficient solution to the same problem, assuming

the designer is satisfied with low additive rather than multiplicative loss. While we instead

consider the unbounded distributions and multiplicative error, the mechanism in our

sample complexity result is in the family of mechanisms identified by Morgenstern and

Roughgarden (2015).

1.8.3. Linking Decisions

The mechanisms we consider for the iterative population model link decisions for bidders

from the same population across distinct iterations. This linking of decisions results

in the perceived competition in the mechanism to be among bidders within the same

population. Competitions for rank among independent and identically distributed bidders

are strategically simple (e.g., Chawla and Hartline, 2013). Linking of decisions has been

previously considered in the context of social choice (Jackson and Sonnenschein, 2007) and

principal-agent delegation (Frankel, 2014). In both of these papers the decisions being

linked are the multi-dimensional reports of a single agent and this linking of decisions

enables the principal to obtain the first-best outcome in the limit. Our analysis improves

upon these results by bounding the convergence rate to the first-best outcome.

1.8.4. Black-Box Reductions

We provide a black-box reduction from non-truthful mechanism design to algorithm de-

sign, in the sense that any algorithm that can solve the allocation problem for the stage
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environment can be converted into a winner-pays-bid or all-pay mechanism with minimal

loss of performance. To do so, our mechanism changes the nature of the competition

in the iterative population model so that bidders compete across iterations but within

each population instead of within an iteration but across populations. This approach has

been employed in revelation mechanism design to reduce Bayesian mechanism design to

Bayesian algorithm design several times before. Hartline and Lucier (2010) give such a

reduction for single-dimensional agents and Hartline et al. (2011), Bei and Huang (2011),

and Dughmi et al. (2017) give reductions for single- and multi-dimensional agents. No-

tably, the reduction of Hartline et al. (2011) for single-dimensional agents gives a mecha-

nism that falls within the family of mechanisms that we develop, albeit with a truthtelling

payment scheme. The approximation of welfare and revenue of our mechanism is inde-

pendent of the payment scheme; therefore, their approximation result implies the same

approximation result for our mechanisms. The approximation bound that we derive im-

proves on theirs in that it is multiplicative and does not assume bidders values fall within

a bounded range.

1.9. Structure of This Thesis

In Chapter 2, we present several models for single-dimensional mechanism design,

and discuss the basic ideas and results that we will use to reason about mechanisms. In

Chapter 3, we consider mechanism design and inference in the absence of the strategic

issues created by non-truthful payment semantics. We show how to design nearly-optimal

truthful mechanisms from samples. The analysis tools employed in this section will serve

as a groundwork for the proofs in subsequent chapters. In Chapter 4, we study the iterated
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population environment, and define the family of mechanisms that is our main object of

study. In Chapter 5, we show that with carefully chosen parameters, the mechanisms in

our family perform nearly optimally, and that these parameters can be easily inferred.

Finally, in Chapter 6, we conclude with open problems.
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CHAPTER 2

Model and Preliminaries

This chapter contains the technical description of the mechanism design settings we

consider in this thesis, as well as some key results from prior work which will serve as

a foundation for our own results. We consider three main models of single-dimensional

Bayesian mechanism design, each defined by the amount of information and power al-

lowed to the designer. In Section 2.1, we formally describe the classical Bayesian mecha-

nism design setting studied by Myerson (1981), in which the seller has full distributional

knowledge, and must design a mechanism to maximize revenue or welfare. This setting

is well-understood, and we will highlight several results that will prove useful.

In Section 2.1.2, we weaken the assumption of full distributional knowledge to Bayesian

mechanism design from samples, where the seller only has access to sampled value profiles

from agents and must infer a revenue-maximizing mechanism with this more limited

information. This setting will serves an intermediate setting as we work towards designing

near-optimal winner-pays-bid and all-pay mechanisms from data. In Chapter 3, we will

show how to reduce the problem of designing a near-optimal truthful mechanism from

samples to the algorithmic problem of computing a welfare-maximizing allocation.

Finally, in Section 2.2, we describe batched Bayesian mechanism design. Intuitively,

the designer has access to several identical copies of a classical Bayesian environment,

and may make decisions jointly across copies. We will design a parametrized family of

winner-pays-bid and all-pay mechanisms for this setting which, for the optimal choice of
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parameters, approach the performance of the optimal truthful mechanism as the number

of batched copies grows large.

2.1. Bayesian Mechanism Design

In the classical single-dimensional Bayesian mechanism design problem (which we also

refer to as the independent private values model), a seller must allocate a service or good

to n different agents. Each agent i derives a value for service vi, which we assume to

be drawn from a distribution Fi, with density function fi (which we assume to exist for

simplicity). We assume values are drawn independently across agents.

We consider general single-dimensional feasibility environments, where each agent has

an allocation variable xi which is 1 if the agent receives service and 0 otherwise. We take

set of agents who may be feasibly served to be an arbitrary set system X ⊆ {0, 1}n. Some

notable special cases include:

• the single-item environment : X consists of all allocation vectors with at most

one nonzero entry

• matroid environments : X is the set of characteristic vectors of a matroid

• single-minded combinatorial environments : as discussed in Section 1.4, X is the

set of collections of agents i who can be allocated their desired desired bundles

Si of items without overallocating any item.

This work reduces several different mechanism design problems to the value maximization

problem of selecting a feasible allocation x ∈ X maximizing the allocated value
∑

i vixi.

We note that in many cases, including the single-minded combinatorial environment, the

value maximization problem is NP-complete.
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A mechanism takes as input a profile of bids b = (b1, . . . , bn) and outputs a feasible

allocation x ∈ X and agent payments p. A mechanism consists of an allocation rule x̃(b),

which maps bid profiles to a feasible allocation, and a payment rule p̃(b), which maps bid

profiles to a non-negative payment for each agent. A standard allocation rule is highest-

bids-win which is defined by x̃(b) ∈ argmaxx∈X
∑

i bi xi. That is, the highest-bids-win

solves the value maximization problem on agents’ reported values. We consider payment

rules defined directly from the allocation algorithm via standard payment semantics. The

three payment rules we consider here are:

• The threshold or critical bid payment rule: p̃i(b) = min{b | x̃i(b,b−i) = 1} · x̃i(b).

• The winner-pays-bid payment rule: p̃i(b) = bix̃i(b).

• The all-pay payment rule: p̃i(b) = bi.

Given an allocation x̃i(b) and payment p̃i(b), an agent’s utility is given by ũi(b) =

vix̃i(b)− p̃i(b).

We analyze mechanisms in Bayes-Nash equilibrium (BNE): each agent’s report to

the mechanism is a best response to the distribution of bids induced by other agents’

strategies. The strategy of agent i is denoted si and maps the agent’s value to a bid. The

mechanism (x̃, p̃), the agents’ strategies s, and distribution of values F induce interim

allocation and payment rules. Agent i’s interim allocation rule is xi(vi) = Ev−i [x̃i(s(v))],

interim payment rule is pi(vi) = Ev−i [p̃i(s(v))], and interim utility is ui(vi) = vixi(vi) −

pi(vi). Formally, BNE states that agent i’s strategy si maximizes ui(vi) for all vi. Of

the three payment rules mentioned above, only the threshold payment rule is dominant

strategy truthful (henceforth truthful for short) in the sense that in any mechanism with a

monotone allocation algorithm and the threshold payment rule, reporting one’s true value
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is a best response no matter the actions of other agents. Winner-pays-bid mechanisms and

all-pay mechanisms tend not to have such an equilibrium, and are therefore non-truthful.

Myerson (1981) characterized the interim allocation and payment rules that arise in BNE.

These results are summarized in the following theorem.

Theorem 2 (Myerson, 1981). Interim allocation and payment rules are induced by

a Bayes-Nash equilibrium of a mechanism with onto strategies and values drawn from a

product distribution if and only if for each agent i,

(1) (monotonicity) allocation rule xi(vi) is monotone non-decreasing in vi, and

(2) (payment identity) payment rule pi(vi) satisfies pi(vi) = vixi(vi) −
∫ vi

0
xi(z)dz +

pi(0).

This paper studies the objectives of welfare and revenue. The welfare of a mechanism is

E[
∑

i vi xi(vi)]. As a corollary of the above discussion, the welfare-optimal mechanism uses

the highest-bids-win allocation algorithm and the threshold payment rule. The revenue

of a mechanism is given by E[
∑

i pi(vi)]. Our revenue analysis is based on the standard

virtual value characterization of Myerson (1981):

Lemma 3. In BNE, the ex ante expected payment of an agent satisfies Evi [pi(vi)] =

Evi [φi(vi)xi(vi)], where φi(vi) = vi − 1−F (vi)
f(vi)

is the Myerson virtual value for value vi.

It follows from Lemma 3 that the equilibrium revenue of a mechanism is given by∑
i Ev[pi(vi)] =

∑
i Ev[φi(vi)xi(vi)]. Regular distributions are those for which the vir-

tual value functions are monotone non-decreasing. For regular distributions, the optimal

mechanism allocates the virtual value-maximizing feasible set.
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An equivalent formulation of Lemma 3 can be stated in terms of agents quantiles

and revenue curves, two concepts that will prove useful in the revenue analysis of our

mechanisms. An agent’s quantile qi(vi) is that agent’s strength in their distribution,

given by qi(vi) = 1 − Fi(vi) (with inverse value function vi(qi) = F−1
i (1 − qi)). The

revenue from posting a price at quantile qi is qivi(qi), and from this, we can define the

price-posting revenue curve Ri(qi) = qivi(qi). An agent’s Myerson virtual value φi(vi) can

be expressed as φi(qi) = R′i(qi). The revenue curve formulation also allows us to derive

the revenue-optimal mechanism for agents whose distributions do not satisfy regularity.

To do so, we define the ironed revenue curve Ri(qi) to be the smallest concave function

that upperbounds Ri(qi), and define the ironed virtual values to be φi(qi) = R
′
i(qi). The

revenue-optimal mechanism for general distributions maximizes ironed virtual surplus,

subject to the constraint that tiebreaking in the mechanism depend only on agents’ virtual

value and index, and not on their value. This can be achieved, for example, by breaking

ties lexicographically.

2.1.1. Position Environments

To design mechanisms for general single-dimensional environments, where winner-pays-

bid and all-pay mechanisms are generally badly behaved, we will draw intuition from a

setting where such mechanisms possess many desirable properties: i.i.d. position envi-

ronments. An n-agent position environment is given by n positions. Each position i has

a corresponding position weight wi ∈ [0, 1], with w1 ≥ . . . ≥ wn. Position environments

arise in models for advertising auctions, where each position represented a potential po-

sition for an ad on a webpage, and the position weight represents the probability that
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an ad in position i will be clicked. A feasible allocation in a position environment is an

assignment of agents to positions, and an agent’s allocation xi is equal to the weight of

the position to which they have been assigned.

In position environments highest-bidders-win allocation rule requires only the rank

information of bidders, as it matches agents to positions assortatively. Chawla and Hart-

line (2013) showed that when agents’ values are i.i.d., the winner-pays-bid and all-pay

implementations of the highest-bidders-win rule has a single, straightforward equilibrium:

Theorem 4 (Chawla and Hartline, 2013). In i.i.d. position environments, the rank-

by-bid winner-pays-bid and all-pay auctions have a unique and welfare-maximizing BNE

(in which agents are assigned to positions in order of their true values).

2.1.2. Bayesian Mechanism Design from Samples

One common criticism of the classical model for Bayesian mechanism design is that it

is often unrealistic to assume that the mechanism designer has full knowledge of agents’

value distributions. The Bayesian mechanism design from samples model, formalized by

Cole and Roughgarden (2014), seeks to address this criticism by modeling the designer’s

acquisition of distributional information more explicitly. Rather than possessing knowl-

edge of each agent i’s prior Fi, the seller has access to a sample oracle, which can be

queried for a freshly sampled value profile vj ∼ F. Using polynomially many samples,

the seller’s goal is to produce a mechanism which obtains at least a (1− ε)-fraction of the

expected revenue of the optimal mechanism which has full knowledge of the true distri-

butions F. Formally, the seller’s goal is to give a procedure which takes sampled value

profiles v1, . . . ,vm for some m polynomial in the number of bidders n and the inverse of
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the target loss, 1/ε, and produce a truthful mechanism ALG(v1, . . . ,vm) to be run on a

fresh sample v0 such that:

Ev1,...,vm∼F[Rev(ALG(v1, . . . ,vm))] ≥ (1− ε)Rev(OPTF),

where for any mechanism M , Rev(M) denotes the expected revenue of M with respect to

the fresh sample v0 ∼ F. Additionally, we will require that the algorithm that produces

the mechanism from samples run in polynomial time.

This problem serves as a useful stepping stone, as we develop winner-pays-bid and

all-pay mechanisms which use bid data to obtain nearly-optimal welfare and revenue. In

Chapter 3, we provide a solution to this problem which applies in any single-dimensional

feasibility environment (as opposed to the single-item results of Cole and Roughgarden

(2014) or the downward-closed results of Devanur et al. (2016)). Subsequent chapters

can be thought of as an implementation of our scheme with winner-pays-bid or all-pay

payment semantics.

2.2. The Population Model

To design near-optimal winner-pays-bid and all-pay mechanisms, we will consider the

iterated population model. The iterated population model is a special case of single-

dimensional Bayesian mechanism design, in which each distribution is comprised of a

continuum of individuals, and each iteration of a mechanism draws new individuals from

each population.
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We consider a batched environment which has T independent copies of the stage en-

vironment. The stage environment is an arbitrary single-dimensional mechanism de-

sign environment, with n buyers, a set X of feasible allocations, and value distributions

F1, . . . , Fn. The batched environment is consequently an independent private value model

with nT agents. Importantly, the T agents from population i are independent and iden-

tically distributed (i.i.d.) according to Fi. The set of feasible allocations for the batched

environment is X T. Values, allocations, payments, and utilities in the batched environ-

ment are denoted as vti , x
t
i, p

t
i, and uti for agent i in stage t.

We will also consider an online version of the population model, in which the designer

has access to stages one at a time. The mechanism designer may use bid data from the

past T − 1 stages in designing a mechanism for the present stage, but they must commit

to allocations and payments in each stage separately. We will show in Chapter 4 how

reasoning about the online model may be reduced to analysis of the offline model.
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CHAPTER 3

Sample Complexity

Recall the main goal of this thesis: to design a parametrized family of mechanisms

with winner-pays-bid and all-pay semantics such that

(1) The revenue or welfare of the optimal mechanism from the family is close to the

performance of the optimal mechanism from the family.

(2) The optimal choice of parameters can be inferred from past bid data generated

by mechanisms in the family.

Both of these goals are made particularly challenging by the restriction to non-truthful

payment semantics. Objective (1) is made difficult by the fact that the performance of

non-truthful mechanisms must be analyzed in equilibrium, which need not generally trade

off allocating bidders from different distributions optimally, or even in a straightforward

way. Objective (2) is made difficult by the fact that inference must be done from bid

data, which are generally not bidders’ true values. In this chapter, we study the problem

of revenue maximization from sampled values.1 This setting allows us to isolate some of

the design challenges related to inference, and solve them in a setting without nontruthful

equilibria complicating the analysis. The approach of the later chapters will reduce the

problem of nontruthful mechanism design from data to this easier truthful setting.

1Welfare maximization can be solved without any distributional access. Nonetheless, our analysis in this
section will generally apply to the objective of welfare as well, which will allow us to design non-truthful
mechanisms with near-optimal welfare, which is nontrivial.
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Our mechanism from samples estimates each agent’s revenue curve, and maximizes

revenue with respect to the estimated revenue curves. In other words, it computes ironed

virtual values as if the distributions had the estimated revenue curves and maximizes

ironed virtual surplus. To estimate the revenue curve, the mechanism estimates the

quantile of a small number of values, and linearly interpolates between the revenue at

these points to construct a full revenue curve.

The proof that the mechanism’s revenue is near-optimal consists of three main steps.

First, we show that for any regular distribution, maximizing revenue with respect to

a piecewise linear approximation of the true revenue curve is nearly as good as max-

imizing revenue with respect ot the true revenue curve. While such a result might

seem intuitively obvious, note that even for regular distributions, the true revenue curve

and a piecewise-linear approximation (obtained by interpolating between R(q) for q ∈

{1/T, 2/T, . . . , T/T} for some positive integer T ) need not be close in either a multi-

plicative or additive sense. The approach we use to prove this theorem involves compos-

ing several natural revenue approximation results which may be of independent interest.

Given that a piecewise-linear approximation to the true revenue curve suffices to approx-

imately maximize revenue, the remainder of the analysis consists of showing that such a

piecewise-linear revenue curve is easy to estimate from samples, and that estimation error

propogates cleanly to revenue loss.

The structure of the chapter is as follows. In Section 3.1, we prove the main technical

insight of this section: that piecewise linear revenue curves suffice for obtaining a close

approximation to the optimal revenue. In Section 3.2, we formally discuss the sample
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complexity implications of this observation, and give a mechanism from samples that

obtains almost-optimal revenue.

3.1. Revenue Maximization with Coarse Revenue Curves

In this section, we show that if a mechanism designer has access to a piecewise-linear

approximation to each agent’s revenue curve, rather than the true distributions, then

maximizing revenue with respect to these approximations is nearly revenue-optimal.

More formally, for each agent i, let Ri denote agent i’s price-posting revenue curve.

Furthermore, for some positive integer T define the piecewise-constant approximation

R
{j/T}j=1,...,T

i (q) by linearly interpolating between the points (j/T,R(j/T )) for j = 1, . . . , n.

We will prove the following theorem:

Theorem 5. Assume agents have regular value distributions. Then for any positive

integer T , the mechanism which maximizes revenue as if each agent i had revenue curve

R
{j/T}j=1,...,T

i obtains a TODO: REVENUE FRACTION of the optimal revenue.

This result seems intuitively obvious. As T grows large, R
{j/T}j=1,...,T

i comes to look

more and more like the true revenue curve, and consequently, the designer’s imagined

distribution should grow close to the true distribution. Formally, however, the result is

less clear. Note that even for regular distributions, there is no way to bound either the

multiplicative or additive distance of R
{j/T}j=1,...,T

i (q) from Ri(q) uniformly for all q ∈ [0, 1].

This is best illustrated by considering the revenue curve of the equal-revenue distribution:

Ri(q) = 1 for q ∈ (0, 1) and 0 for q ∈ {0, 1}. For extremely low and extremely high or low

quantiles, the Ri(q) = 1, while R
{j/T}j=1,...,T

i (q) can be arbitrarily small.
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Rather than argue in the space of revenue curves, we prove Theorem 5 indirectly.

Note that for any agent i, the revenue-optimal mechanism under the piecewise-linear

approximations R
{j/T}j=1,...,T

i (q) will treat each quantile qi ∈ [j/t, (j+1)/T ] identically. In

other words, this mechanism treats types coarsely based on their “bin” in quantile space.

In fact, maximizing revenue according to R
{j/T}j=1,...,T

i (q) is the revenue-optimal way to

treat agents in each bin identically, and will inherit the revenue properties of every other

mechanism in the class of mechanisms that satisfy this property. We therefore proceed

by constructing a different bin-based mechanism, and proving a performance guarantee

for this new mechanism.

To construct an approximately-optimal bin-based mechanism, we begin with the revenue-

optimal mechanism for the true distributions, and transform it into a bin-based mecha-

nism by resampling (as in Hartline and Lucier, 2010). When a agent i reports a quan-

tile qi ∈ [j/T, (j + 1)/T ], the mechanism instead resamples a quantile uniformly from

[j/T, (j + 1)/T ] and treats this sample as their report in the revenue-optimal mechanism

for their true distributions. Note that for some regular distributions (e.g. the equal-

revenue distribution mentioned above), any mechanism which attains high revenue must

treat agents with extreme quantiles delicately, making sure to allocate very high quantiles

and reject very low quantiles. Resampling reduces a mechanism’s ability to treat extremal

quantiles in this way. We show how to modify the resampling procedure to treat extreme

quantiles carefully, which yields our approximately-optimal bin-based mechanism.

In Section 3.1.1, we present a more general statement of Theorem 5, which will imply

Theorem 5 as well as laying the technical groundwork for the samples-based approach

of Section 3.2. In Sections 3.1.2 and 3.1.3, we prove this more general theorem using
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the indirect approach described above. Section 3.1.2 formalizes the idea that optimizing

revenue based on a piecewise-linear approximation to the true revenue curve is revenue-

optimal in the family of mechanisms which treats agents based a coarsening of their

distribution into “bins.” In Section 3.1.3, we design a bin-based resampling mechanism

with nearly-optimal revenue.

3.1.1. Technical Preliminaries

In this section, we formally state a more general version of Theorem 5, which we will prove

subsequently. Theorem 5 states that knowing only Ri(j/T ) for some positive integer T ,

for all i ∈ {1, . . . , n}, and all j ∈ {1, . . . , T}, a mechanism designer can attain nearly

optimal revenue. To maximize revenue from samples, one could then hope to estimate

each value of Ri(j/T ). Because it is easier to bound the error from estimating the quantile

of a given value than it is to accurately estimate the value at a given quantile, we relax the

set of quantiles for which the designer knows the revenues from j/T for all j ∈ {0, . . . , T}

to some general set of quantiles q̂ji for j ∈ {0, . . . , T}, with 0 = q̂0
i ≤ q̂1

i ≤ . . . ≤ q̂Ti = 1,

which we will refer to as “breakpoints.” Our mechanism from samples in Section 3.2

will use values of q̂Ji which are close to j/T . Throughout, we will take T to be given in

advance.

As discussed, we will consider the mechanism which treats agents as if their revenue

curves were a linear interpolation between (q̂ji , Ri(q̂
j
i ) for all j. We formally define these

curves as follows:
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Definition 6. Let Q̂i be a set of breakpoints for a single agent i such that q̂0 = 0 ≤

q̂1 ≤ . . . ≤ q̂T = 1. The binned revenue curve for Q̂ is given by

RQ̂i
i (q) =

q−q̂ji
q̂j+1
i −q̂ji

Ri(q̂
j+1
i ) +

q̂j+1
i −q

q̂j+1
i −q̂ji

Ri(q̂
j
i ) for q ∈ [q̂ji , q̂

j+1
i ].

With Definition 6 in hand, we may state our the generalization of Theorem 5:

Theorem 7. Let Q̂ = {q̂ji }
j=1,...,T
i=1,...,n denote a set of breakpoints for each player. Let

q̂ji ∈ [j/T − ε, j/T + ε] for all agents i and j ∈ {1, . . . , T − 1}, and further let ε ≤

min((nT )−1/2, T−1). Then the revenue-maximizing mechanism for revenue curves R̂Q̂i
i

obtains at least a (1−O(
√
n/T ))-fraction of the optimal virtual surplus.

3.1.2. Optimal Binning Mechanisms

In this section, we begin developing the necessary tools to prove Theorem 7. For any

agent i, the revenue-optimal mechanism for the linear approximations R̂Q̂i
i treats each

quantile qi ∈ [q̂ji , q̂
j+1
i ] identically. In other words, it divides each agent’s quantile space

into “bins,” given by [q̂ji , q̂
j+1
i ], and treats them conditioned on their bin. We show in

what follows that this mechanism is revenue-optimal among all mechanisms which treat

agents based only on the label of their bin. Consequently, this mechanism will inherit

any revenue guarantees we derive for other mechanisms in this family. There remainder

of the proof of Theorem 7 will be the construction of another bin-based mechanism which

is approximately revenue-optimal. Formally stated, we have the following:
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Theorem 8. Let Q̂ be a set of T breakpoints for each agent. The mechanism which

maximizes revenue as if each agent i had revenue curve R̂Q̂i
i is revenue-optimal among all

mechanisms which treat each agent based only on the bin into which their quantile falls.

Proof. Given a Bayesian mechanism design environment with distributions F1, . . . , Fn,

define the bin-based algorithm design problem for bins given by Q̂ as follows: the designer

must choose a truthful mechanism with allocation rule x which takes as inputs the in-

dices k(v) = (k1(v1), . . . , kn(vn)) of the bins into which each agent’s quantile falls and

outputs a feasible allocation. In other words, ki(vi) is defined to be the index j such that

qi(vi) ∈ [q̂ji , q̂
j+1
i ]. As a constraint, x must be monotone decreasing in ki for each agent.

The objective is to maximize Ev∼F[
∑

i φi(vi)xi(k(v))], where φi(·) is the Myerson virtual

value function.

The above optimization problem can be solved by inspection. Fixing an allocation

algorithm, the objective can be rewritten as E[
∑

i E[φi(vi) | ki]xi(k(v))] by linearity of ex-

pectation. From this expression, it becomes clear that the optimal mechanism maximizes

the quantity
∑

i E[φi(vi) | ki]xi(k(v)) pointwise. These conditional virtual surpluses are

exactly the slopes of the binned revenue curves, which are the virtual values maximized

by the optimal mechanism for the binned revenue curves. Note that if φi(·) is monotone

(which it will be for regular distributions), then this algorithm will be monotone as well,

and therefore feasible. Hence, maximizing revenue for the binned revenue curves is the

revenue-optimal mechanism which conditions an agent’s treatment solely on their bin. �



www.manaraa.com

39

3.1.3. Binning Via Resampling

We have shown that a mechanism designer who is constrained to treating agents based

on a coarsening of their quantile space into “bins” should maximize virtual surplus con-

ditioned on the bin of each agent. This is exactly the mechanism of Theorem 7. To prove

Theorem 7, then, we need only construct some mechanism which for all bins, treats all

types in that bin identically. We accomplish this task in what follows.

In addition to proving Theorem 7 and therefore enabling us to prove a sample complex-

ity result, the tools developed in this section will also be helpful for deriving mechanisms

with nontruthful payment semantics for the iterated population environment in Chapters 4

and 5. As discussed in Chapter 1, designing nontruthful mechanisms for the objectives of

welfare and revenue are both challenging. This stands in contrast to truthful mechanism

design from samples, where maximizing welfare is trivial - the prior-independent VCG

mechanism is always welfare optimal.

Because we will apply the techniques in this section to welfare in the subsequent

chapters, we will will consider not only bin-based mechanisms for revenue but also bin-

based mechanisms for welfare. To accommodate multiple objectives, we will instead

consider the maximization of an abstract virtual surplus quantity φi for each agent. Taking

φi to be the Myerson virtual value of Lemma 3 will yield a revenue result. Taking φi(qi) =

vi(qi) will instead produce a welfare result.

3.1.3.1. Intuition. To prove Theorem 7, we will show that any monotone allocation rule

can be converted into a bin-based rule without losing much virtual welfare. To do so, we

take each agent i with value vi ∈ [q̂ji , q̂
j+1
i ] and resample their value from Fi conditioned

to that interval, and then apply the original allocation rule with respect to the resampled
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values. Such a resampling does not change the induced allocation rule for any other

agents, and replaces the allocation rule on [q̂ji , q̂
j+1
i ] with its average.

This basic approach does not directly lead to the desired approximation bound be-

cause, for the highest-valued interval (i.e. the lowest quantiles), the allocation probability

at the top of the interval may be much higher than its average allocation probability,

and higher values on the interval may be much higher than the interval’s average. For

example, if the value and allocation rule are both one for an ε measure and zero otherwise,

then the original welfare is ε and the welfare from resampling is ε2. A similar problem

holds for extremely high quantiles, whose virtual value might be extremely negative.

To resolve this issue, we will first modify the allocation rule to treat agents with values

in the top k intervals as if they had the highest value in the support of their distributions,

and treat agents with values in the bottom k intervals as if they had the lowest value

in the support of their distributions, for some given positive integer k. The quantiles

of the remaining agents will be rescaled. Conditioned on the values not being in the

top or bottom k intervals, the value distribution after rescaling will match the original

unconditioned value distribution. We refer to this transformation as extremal buffering.

Unlike the basic resampling approach, applying this method to one agent does change the

mechanism for other agents. We show that this change does not have a significant impact

on the outcomes other agents receive, and approximately preserves welfare and revenue

from each population. Our analysis will hold for any choice of k. Theorem 7 will follow

from choosing k wisely.

We analyze the top promotion procedure in Section 3.1.3.2, and the binning algorithm

that results from resampling in Section 3.1.3.3.
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3.1.3.2. Extremal Buffering. We have seen that näıvely resampling each agent’s value

based on their bin cannot yield a mechanism with a good welfare or revenue approxima-

tion. We show now how to transform an arbitrary allocation algorithm to guarantee that

not too much virtual surplus is lost from mishandling agents with extreme quantiles. The

procedure follows:

Definition 9. Given a monotone allocation algorithm x, breakpoints Q̂, and an integer

k, the k-bin extremal buffering algorithm for x and Q̂ runs x on agents with quantiles

transformed for each agent as follows:

• For any qi ∈ [0, q̂ki ], return 0.

• For any qi ∈ [q̂ki , q̂
T−k
i ], return (qi − q̂ki )/(q̂T−ki − q̂ki ).

• For any qi ∈ [q̂T−ki , 1], return 1.

We will prove the following approximation guarantee:

Lemma 10. Let q̂k = maxi q̂
k
i and q̂T−k = mini q̂

T−k
i , and for each agent i, let φi :

[0, 1]→ R be an arbitrary nonincreasing virtual value function satisfying
∫ 1

0
φi(q) dq ≥ 0.

The k-bin extremal buffering algorithm for x̂ and Q̂ attains at least a (1−q̂k/q̂T−k)q̂T−k(1−

(n− 1)(q̂k + (1− q̂T−k)))-fraction of the virtual surplus of x.

The proof of Lemma 10 will proceed in two main steps. First, we will show that

applying the quantile remapping procedure in Definition 9 to a single agent i (leaving

other agents’ quantiles untouched) cannot reduce the virtual surplus from that agent

by too much. This will follow from a natural approximation result we derive, which

relates the virtual surpluses of allocation rules with inverses that are multiplicatively close.
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Second, we will show that subsequently applying the quantile resampling procedure to

the remaining agents other than i also does not significantly reduce the expected virtual

surplus from i. This will follow from the fact that the distribution of quantiles input

to the base allocation algorithm is identical, conditioned on no agents having extreme

quantiles.

We begin with the single-agent analysis. Note that for a single agent, the extremal

buffering procedure can be thought of as two composed steps. First is a top promotion

procedure, which remaps sufficiently low quantiles to 0 while remapping the remaining

quantiles to induce a uniform distribution over [0, 1]. Top promotion is then composed

with bottom demotion, which performs analogous transformation, mapping high quantiles

to 1 and mapping the rest of the interval to [0, 1]. We formalize this as follows:

Definition 11. Given a monotone single-agent allocation rule x and quantile q, the

top promotion algorithm for x and q runs x on the agent with quantiles transformed as

follows:

• For any q ∈ [0, q], return 0.

• For any q ∈ [q, 1], return (q − q)/(1− q).

Definition 12. Given a monotone single-agent allocation rule x and quantile q, the

bottom demotion algorithm for x and q runs x on the agent with quantiles transformed

as follows:

• For any q ∈ [0, q], return q/q.

• For any q ∈ [q, 1], return 1.
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The interim allocation rule faced by an agent i after applying the extremal buffering

algorithm to just i is the composition of the bottom demotion algorithm for quantile q̂T−ki

composed with the top promotion algorithm for original allocation rule xi and quantile

q̂ki /q̂
T−k
i . Consequently, we may analyze the loss from applying these two transformations

separately and multiply the losses.

We first analyze bottom demotion. While bottom demotion does not produce an

allocation rule which is multiplicatively close to the original rule, it does produce one

which is close in a different sense: its inverse is close to the inverse of the original rule.

For the objectives of both revenue and welfare, this notion of closeness also produces a

multiplicative approximation for virtual surplus. We state this as a separate technical

lemma, as we will make use of the idea multiple times.

Lemma 13. For virtual value function φ(·) and cumulative virtual value R(q) =∫ q
0
φ(r) dr satisfying R(α q) ≥ αR(q) for all quantiles q and α ∈ [0, 1], and any two

allocation rules x̃ and x̂ that satisfy x̃−1(z) ≥ x̂−1(z) ≥ 1
α
x̃−1(z), the virtual surpluses

satisfy

Eq∼U [0,1][φ(q)x̂(q)] ≥ 1
α
Eq∼U [0,1][φ(q)x̃(q)].

Proof. The virtual surplus can be rewritten as
∫ 1

0
φ(q)x(q) dq =

∫ 1

0
R(x−1(z))dz. This

follows from an integration by parts and then change of variables to integrate the vertical
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axis rather than the horizontal axis as follows:

∫ 1

0

φ(q)x(q) dq = R(1)x(1)−R(0)x(0) +

∫ 1

0

R(q) (−x′(q)) dq(3.1)

=

∫ x(1)

0

R(1) dz − 0 +

∫ 1

x(1)

R(x−1(z)) dz.

Now consider two arbitrary quantiles q1 and q2 satisfying 1
α
q1 ≤ q2 ≤ q1. By assump-

tion, we have R(q2) ≥ q2R(q1)/q1 ≥ 1
α
R(q1). The assumption on the approximation of

the two allocation rules, namely x̃−1(z) ≥ x̂−1(z) ≥ 1
α
x̃−1(z) for all z ∈ [0, 1], and the

expected virtual surplus written as
∫ 1

0
R(x−1(z))dz suffice to prove the lemma. �

Lemma 14. Let φ : [0, 1] → R be an arbitrary nonincreasing virtual value function.

Given a monotone single-agent allocation rule x and quantile q, the bottom demotion

algorithm for x and q obtains at least a q-fraction of the expected virtual surplus of x.

Proof. The lemma will follow from a straightforward application of Lemma 13. For

a quantile q receiving allocation x(q) from the base algorithm, the quantile receiving

this probability of allocation under the bottom demotion algorithm will be qq. Hence,

x−1(z) ≥ x̂−1(z) = qx−1(z). Since φ is nonincreasing in q, we have that R(q) =
∫ q

0
φ(r) dr

satisfies R(αq) ≥ αR(q) for all α ∈ [0, 1]. Hence, Lemma 13 implies the desired result. �

We have shown that bottom demotion results in an allocation rule which has an inverse

close to that of the original rule on which it is based. To derive an approximation result

for the top promotion algorithm requires a more nuanced version of the same approach,

based on two observations. First, the “unallocation rules”, i.e., y(q) = 1 − x(1 − q) for

allocation rule x(q), satisfy the inverse-approximation condition of the lemma. Second,
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the virtual surplus of the unallocation rule is given by the expected virtual value plus the

negative virtual surplus of the unallocation rule. Specifically Eq[φ(q)x(q)] = Eq[φ(q)] +

Eq[(−φ(1−q)) y(q)]. While virtual values for revenue always satisfy the property that rays

from the origin cross the cumulative virtual value curve from below, this property does

not generally hold for the negative virtual values −φ(1−q). Regularity, i.e., monotonicity

of the original virtual value function, however, implies the property for negative virtual

values. These observations are formally summarized in the subsequent lemma:

Lemma 15. Let φ : [0, 1] → R be an arbitrary nonincreasing virtual value function

satisfying
∫ 1

0
φ(q) dq ≥ 0. Given a monotone single-agent allocation rule x and quantile q,

the top promotion algorithm for x and q obtains at least a (1− q)-fraction of the expected

virtual surplus of x.

Proof. Note that the expected virtual surplus from any allocation rule x is can be

written as
∫ 1

0
φ(q)x(q) dq =

∫ 1

0
φ(q) dq −

∫ 1

0
φ(q)(1 − x(q)) dq. Specifically, let x̂ be the

allocation rule of the top promotion algorithm, and x the allocation rule of the original

algorithm. Moreover, define ŷ(q) = 1 − x̂(1 − q) and y(q) = 1 − x(1 − q) to be the

corresponding “unallocation rules.” We will show that

(3.2)

∫ 1

0

−φ(1− q)ŷ(q) dq ≥ (1− q)
∫ 1

0

−φ(1− q)y(q) dq.

Since,
∫ 1

0
φ(q) dq ≥ 0, this will prove that

∫ 1

0
φ(q)x(q) dq ≥ (1− q)

∫ 1

0
φ(q)x̂(q) dq.

To prove (3.2), note that the definition of the top promotion algorithm can be manipu-

lated to obtain x̂−1(z) = x−1(z)(1−q)+q. Moreover, by the definition of y and ŷ, we have

y−1 = 1− x−1(1− z) and ŷ−1 = 1− x̂−1(1− z). Combining these three equations yields
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that y−1(z) ≥ ŷ−1(z) = (1− q)y−1(z) for all z ∈ [0, 1]. Moreover, note that −φ(1− q) is

decreasing in q. This implies that R(q)/q ≥ −φ(1 − q), where R(q) =
∫ q

0
−φ(1 − q) dq.

We may therefore apply Lemma 13, which yields (3.2). �

Combining Lemmas 14 and 15 yields the following lemma:

Lemma 16. Let φ : [0, 1] → R be an arbitrary nonincreasing virtual value function

satisfying
∫ 1

0
φ(q) dq ≥ 0, and consider an arbitrary agent i. The k-bin extremal buffering

algorithm for x and Q̂, when applied only to agent i, attains at least a (1− q̂ki q̂T−ki )q̂T−ki -

fraction of the expected virtual surplus for i.

Having derived a single-agent guarantee, we now show that applying the extremal

buffering algorithm to all agents at once, rather than just to one agent, yields only a small

additional loss. Intuitively, for each agent, the mechanism only appears different when

another agent has an extreme quantile which is promoted or demoted by the buffering

algorithm. The probability of such an event can be bounded using the union bound.

Formally, we have:

Proof of Lemma 10. Lemma 16 states that the virtual surplus lost from applying

the extremal buffering to a single agent is small. We now argue that applying the algorithm

to all agents at once does not incur much additional loss. We argue from the perspective

of an arbitrary agent i.

The key observation in our analysis is that the distribution of the quantiles of other

agents is nearly unchanged by the extremal buffering algorithm. In particular, note that

the probability that one or more agents other than i with quantiles set to 0 or 1 by the

extremal buffering algorithm is at most (n − 1)(q̂k + (1 − q̂T−k), by the union bound.
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Conditioned on there being no such agents, the distribution of quantiles input to the

allocation algorithm remains uniform. It follows that the virtual surplus from distribution

i conditioned on this event is identical to the revenue from the extremal buffering algorithm

applied only to i.

In the event that there are one or more agents from populations other than i who have

top quantiles (which are promoted) or bottom quantiles (which are demoted), we note

that the conditional virtual surplus from population i is nonnegative. To see this, let x̃i

be the interim allocation rule for agent i in the extremal buffering algorithm conditioned

on the event E that at least one agent j other than i has a quantile in [0, q̂kj ] ∪ [q̂T−kj , 1].

Since x is a monotone function of its inputs, it must be that x̃i is nondecreasing. The

expected virtual surplus from agent i conditioned on E is
∫ 1

0
φi(q)x̃i(q) dq. By assumption,∫ 1

0
φi(q) dq ≥ 0, so it must also be the case that

∫ 1

0
φi(q)x̃i(q) dq ≥ 0.

To conclude the proof, let x̂i denote the interim allocation rule of the extremal buffering

algorithm conditioned on the event E . The total virtual surplus from agent i is:

Pr(E)

∫ 1

0

φi(q)x̃i(q) dq + Pr(E)

∫ 1

0

φi(q)x̂i(q) dq

By the union bound, Pr(E) = 1−Pr(E) ≥ 1− (n− 1)(q̂k + q̂T−k). By Lemma 16 and the

fact that, conditioned on E , the distribution of quantiles i perceives from other agents is

uniform implies that

∫ 1

0

φi(q)x̂i(q) dq ≥ (1− q̂ki /q̂T−ki )q̂T−ki

∫ 1

0
φi(q)xi(q) dq

≥ (1− q̂k/q̂T−k)q̂T−k
∫ 1

0
φi(q)xi(q) dq.
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Since we have shown that
∫ 1

0
φi(q)x̂i(q) dq ≥ 0, we can combine the above to obtain:

Pr(E)

∫ 1

0

φi(q)x̃i(q) dq + Pr(E)

∫ 1

0

φi(q)x̂i(q) dq

≥ (1− q̂k/q̂T−k)q̂T−k(1− (n− 1)(q̂k + (1− q̂T−k)))
∫ 1

0

φi(q)xi(q) dq.

Summing over agents proves the lemma. �

Since we have reasoned about abstract virtual surplus, which could be value or Myer-

son virtual value, we obtain revenue and welfare approximation results for the extremal

buffering algorithm.

Corollary 17. Given a monotone allocation rule x, breakpoints Q̂, and positive in-

teger k, the k-bin extremal buffering algorithm for x and Q̂ obtains at least a (1 −

q̂k/q̂T−k)q̂T−k(1− (n−1)(q̂k + (1− q̂T−k)))-fraction of the expected welfare of x. If agents’

distributions are regular, then the k-bin extremal buffering algorithm obtains at least a

(1− q̂k/q̂T−k)q̂T−k(1− (n− 1)(q̂k + (1− q̂T−k)))-fraction of the revenue of x as well.

3.1.3.3. Approximately Optimal Resampling. We observed in Section 3.1.3.1 that

the resampling each agent’s quantile from their bin could drastically reduce the welfare

or revenue of an algorithm. Driving this loss were agents with extreme quantiles: if the

base algorithm’s welfare was driven primarily by allocating rare but high-valued agents

while rejecting all other quantiles, it is very unlikely that the resampling procedure will

give these high-valued agents priority.

Applying the extremal buffering procedure before resampling solves exactly this issue.

After applying the extremal buffering procedure, resampling does not change the way
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the mechanism treats the top k and bottom k bins, as agents in those bins are already

treated identically. Consequently, any loss from resampling must occur in the central

quantiles of the distribution. For decreasing virtual value functions, such loss cannot be

too high. In what follows, we formally define our resampling procedure, and then prove

its performance guarantee.

Definition 18. The resampling algorithm for allocation algorithm x̂, breakpoints Q̂,

and k buffered bins resamples a quantile for each agent i with quantile qi ∈ [q̂ji , q̂
j+1
i ]

uniformly from [q̂ji , q̂
j+1
i ], and runs the k-bin extremal buffering algorithm for Q̂ and x̂ on

the resampled quantiles.

Lemma 19. For each agent i, let φi be a nondecreasing virtual value function, and

let x be an a monotone allocation algorithm. For any k ≤ T/2, define

αk(Q̂) = min
i

min

(
min

k≤j≤T−k−1
(q̂ji /q̂

j+1
i ), min

k≤j≤T−k−1
(1− q̂j+1

i )/(1− q̂ji )
)
.

The resampling algorithm for x, k, and obtains at least an αk(Q̂)(1 − q̂k/q̂T−k)q̂T−k(1 −

(n− 1)(q̂k + (1− q̂T−k))) of the i’s virtual surplus under x.

To prove Lemma 19, we first state a useful lemma formalized in Roughgarden and

Schrijvers (2016), which characterizes the relationship between the virtual surplus of re-

sampling algorithms and their base algorithms. Informally, the result states that the

revenue from bin-based resampling for an allocation rule x is the same as if x was run on

the binned revenue curve for those same bins. Formally:

Lemma 20 (Roughgarden and Schrijvers, 2016). Let Q̂ be a set of breakpoints for

each agent, and for every agent i, let φi be a virtual value function for each agent, with
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cumulative virtual surplus Ri =
∫ q

0
φi(r) dr. For any allocation algorithm x, let x denote

the algorithm which resample’s each agent’s quantile qi ∈ [q̂ji , q̂
j+1
i ] uniformly from their

bin [q̂ji , q̂
j+1
i ] and runs x on the resampled quantiles. Then for each agent i we have:

E[−x′i(qi)Ri(qi)] = E[−x′i(qi)R
Q̂i
i (qi)] = E[−x′i(qi)R

Q̂i
i (qi)].

Proof of Lemma 19. Let x̂ denote the allocation rule of the k-bin extremal buffer-

ing algorithm, and x that of the resampling algorithm. Define

R̂i(qi) =



Ri(qi) for qi ∈ [q̂ki , q̂
T−k
i ]

qi
q̂ki
Ri(q̂

k
i ) for qi ∈ [0, q̂ki ]

1−qi
1−q̂T−k

i

Ri(q̂
T−k
i ) for qi ∈ [q̂T−ki , 1].

That is, R̂i is equal to Ri except in [0, q̂ki ] and [q̂T−ki , 1], where it is a linear interpolation

between the revenue curve at the endpoints of those intervals.

We will argue the following sequence of inequalities for each agent:

E[−x′i(qi)Ri(qi)] = E[−x̂′i(qi)R
Q̂i
i (qi)]

≥ αk(Q̂)E[−x̂′i(qi)R̂i(qi)]

= αk(Q̂)E[−x̂′i(qi)Ri(qi)].

The first equality follows from Lemma 20. We will prove shortly thatRQ̂i
i (qi) ≥ αk(Q̂)R̂i(qi)

for all qi ∈ [0, 1], which implies the middle inequality. The last equality follows from the
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fact that the extremal buffering algorithm treats agents in the first and last k bins iden-

tically. Since the first and last expressions in the above chain are the respective virtual

surpluses of the binning and buffering algorithms, respectively, the result will follow.

To see that RQ̂i
i (qi) ≥ αk(Q̂)R̂i(qi), note that RQ̂i

i (qi) = R̂i(qi) for all quantiles in

[0, q̂ki ] ∪ [q̂T−ki , 1]. Otherwise, consider qi ∈ [q̂ji , q̂
j+1
i ] for j ∈ {k, . . . , T − k − 1}. Assume

without loss of generality that Ri(q̂
j
i ) ≤ Ri(q̂

j+1
i ); a symmetric argument will apply to the

case where Ri(q̂
j
i ) ≥ Ri(q̂

j+1
i ). By the definition of RQ̂i

i and the concavity of Ri, it must

be that RQ̂i
i (qi) ≥ Ri(q̂

j
i ). Moreover, the concavity of Ri implies that R̂i(qi) = Ri(qi) ≤

q̂ji
q̂j+1
i

Ri(q̂
j
i ). The result follows. �

Proof of Theorem 7. We proved in Theorem 8 that the mechanism which maxi-

mizes revenue for the binned revenue curves RQ̂
i is optimal among all mechanisms which

treat agents based only on their bin. It therefore inherits the revenue guarantees of the

k-bin resampling mechanism for any choice of k. Choosing k =
√
n/T and applying the

bound of Lemma 19 yields the result. �

3.2. Revenue Maximization from Samples

In the previous section, we showed that given knowledge of each agent’s revenue curve

at a collection of sufficiently evenly-spaced (but not necessarily uniform) points, it is

possible to nearly maximize revenue by simply interpolating linearly between these points

and maximizing revenue according to this approximation. We now show how to emulate

this process using estimates of the revenue curve at evenly-spaced points.

To estimate a each agent’s revenue curve from samples, we will use a simple ranking

procedure. A consequence of the Chernoff-Hoeffding inequality is that given some large



www.manaraa.com

52

positive integers T and m, the jm − 1st-highest sample among Tm − 1, denoted v̂ji will

have quantile concentrated around j/T . It will follow that if we treat v̂ji as the true value

at quantile j/T , we will obtain a close estimate to the binned revenue curve for the true

quantiles qi(v̂
j
i ). Maximizing revenue with respect to a close estimate of the true revenue

curve yields a close revenue approximation. We first formalize our estimates for each

agent’s revenue curve given value estimates:

Definition 21. For any agent i, given values v̂ji for j ∈ {0, 1, . . . , T − 1}, define the

estimated revenue curve R̂i for v̂i as:

(3.3) R̂i(q) =



q
T
v̂1
i for q ∈ [0, 1/T ]

(Tq − j) j+1
T
v̂j+1
i + (j + 1− Tq) j

T
v̂ji for q ∈ [j/T, (j + 1)/T ]

with j ∈ {1, . . . , T − 2}

1−q
1−1/T

T−1
T
v̂T−1
i for q ∈ [(T − 1)/T, 1]

It is now straightforward to define our mechanism from samples:

Definition 22. Given a target loss ε > 0 and sample access to regular distributions

F1, . . . , Fn, the binning mechanism from samples:

(1) Sample mT − 1 value profiles (containing one value per agent).

(2) For all i and j, let v̂ji be the jm− 1st highest sample from distribution i.

(3) For each agent i, construct the estimated revenue curve R̂i for v̂i.

(4) Maximize revenue with respect to the estimated revenue curves.
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Note that the binning mechanism from samples does indeed treat agents in each bin

identically: the slope of the estimated revenue curve is constant on each interval [j/T, (j+

1)/T ], and therefore agents in each bin have the same estimated virtual value. It follows

that they will be treated the same.

In what follows, we show that the binning mechanism from samples gets a (1 − ε)-

fraction of the optimal expected revenue with probability at least (1 − ε). The analysis

consists of three steps. First, we prove a straightforward technical lemma: with Tm − 1

sampled value profiles, qi(v̂
j
i ) concentrates around j/T . Formally, we will show:

Lemma 23. Let ε and δ be given. There exist T and m polynomial in ε, δ, and n

such that with probability at least (1 − δ), qi(v̂
j
i ) ∈ [j/T − ε, j/T + ε] simultaneously for

all i and j.

We prove this lemma in the appendix. Second, we show that in the event that

qi(v̂
j
i ) ∈ [j/T − δ, j/T + δ], the estimated revenue curve is everywhere close to the binned

revenue curve for qi(v̂
j
i ). Finally, we show that this closeness of revenue curves implies

that the binning mechanism from samples performs comparably to the mechanism which

maximizes revenue with respect to the binned revenue curves, which we proved in the pre-

vious sections performs almost-optimally. Together, these steps will prove the following

theorem:

Theorem 24. For regular distributions F1, . . . , Fn, any feasibility environment, and

any ε > 0, there exist choices of T and m which are polynomial in ε and n such that the

binning mechanism from samples obtains at least (1− ε)-fraction of the expected revenue

of the optimal mechanism for F1, . . . , Fn, with probability at least (1− ε).
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3.2.1. Estimating Binned Revenue Curves

In this section, we show that assuming the quantiles of the breakpoints estimated by

the binning algorithm from samples are sufficiently close to the uniform breakpoints

1/T, 2/T, . . . , (T − 1)/T , the estimated revenue curve for v̂i will be close to the binned

revenue curve for the estimated breakpoints. Formally, define q̂ji = qi(v̂
j
i ) for all i and j.

We will prove:

Lemma 25. Fix an agent i. Let Qi = {q̂ji }j=0,...,T . Conditioned on the event that

q̂ji ∈ [j/T − ε, j/T + ε], then for any qi ∈ [0, 1], |R̂i(qi) − RQ̂i(qi)| ≤ O(εT )R∗i , where

R∗i = maxq Ri(q).

Proof. We we will show R̂i(qi)−RQ̂i(qi) ≤ O(εT )R∗i , i.e. that the estimated revenue

curve does not overestimate by too much. Bounding the magnitude of the underestimate

will follow from a similar argument.

First, note that R̂i(qi) is maximized pointwise for all qi when q̂ji = j/T − ε for all

j. Assume this is the case. In this situation, it is easy to show that R̂i(qi) ≤ Ri(qi −

ε) + ε
qi
Ri(qi − ε) ≤ Ri(qi − ε) + εTR∗. This upperbounds R̂i(qi). To lowerbound RQ̂i

i (qi),

note that because RQ̂i
i is a piecewise linear interpolation between the revenue values at the

breakpoints in Q̂i, its slope is always at least −TR∗(q). Hence, RQ̂i
i (qi) ≥ Ri(qi−ε)−εTR∗.

This implies the lemma. �
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3.2.2. Propagation of Error

In the previous section, we showed that the binning mechanism from samples estimates

a revenue curve which is close to the binned revenue curve. We further know that max-

imizing revenue with respect to the binned revenue curves is almost revenue-optimal. In

this section, we complete the proof of our sample complexity result by showing that error

in estimation of the binned revenue curves propagates cleanly to the performance of the

mechanism. In particular, we have the following:

Lemma 26. Given a collection of breakpoints Q̂ and estimates v̂ji of vi(q̂
j
i ) for each

i and breakpoint q̂ji , If qi(v̂
j
i ) ∈ [j/T − ε, j/T + ε] for all i and j, then the revenue of

mechanism which maximizes revenue with respect to the binned revenue curves RQ̂
i differs

from that of the binning algorithm from samples with estimates v̂ by at most O(εT )
∑

iR
∗
i .

Proof. The result will follow from the following sequence of inequalities:

∑
i

E[−x̂′i(qi)Ri(qi)] =
∑

i E[−x̂′i(qi)R
Q̂i
i (qi)]

≥
∑

i E[−x̂′i(qi)R̂i(qi)]−O(εT )
∑

iR
∗
i

≥
∑

i E[−x′i(qi)R̂i(qi)]−O(εT )
∑

iR
∗
i

≥
∑

i E[−x′i(qi)R
Q̂
i (qi)]−O(εT )

∑
iR
∗
i

=
∑

i E[−x′i(qi)Ri(qi)]−O(εT )
∑

iR
∗
i .

The first equality follows from the the fact that the binning algorithm treats all quantiles

in each bin identically. The first inequality comes from, Lemma 25k combined with the

fact that −x̂′i is nonnegative and integrates to at most 1. The second equality follows
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from the fact that x̂ maximizes revenue with respect to R̂i, while x does not. The third

inequality follows from applying Lemma 25 again, and the final equality follows from the

fact that the optimal mechanism for the binned revenue curves treats agents based solely

on their bin. �

Proof of Theorem 24. The theorem follows from combining Lemmas 23 and 26

with Theorem 7, and noting that
∑

iR
∗
i is an upper bound on the optimal revenue. �
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CHAPTER 4

Rank-Based Mechanism Design

In this section we define a parametrized family of winner-pays-bid and all-pay mech-

anisms for the batched environment and discuss their equilibria and optimization. Recall

that the batched environment is a single-dimensional environment comprised of T stages.

Each stage is comprised of n buyers, a set X of feasible allocations, and value distribu-

tions F1, . . . , Fn. Each distribution corresponds to a population, and the T agents for each

population i have values which are independent and identically distributed according to

distribution Fi. In this and the next chapter, we argue:

(1) Every mechanism in our parametrized family has a focal equilibrium which is

easy to characterize.

(2) There exists a choice of parameters such that our mechanism’s revenue (or wel-

fare) is close to that of the revenue (or welfare-) optimal mechanism (i.e. from

outside our family).

(3) The optimal choice of parameters in Part (2) is can be easily inferred from any

nontrivial mechanism in our family.

Our restriction to non-truthful payment semantics introduces challenges for proving all

three of the above claims. The first claim is challenging because we make no restriction

on the set of feasible allocations X of the stage environment. For such environments,

the equilibria of winner-pays-bid and all-pay mechanisms can often be complicated due
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to the asymmetry that might be present in the feasibility environment an distributions.

Moreover, because of this asymmetry, there is no assurance that equilibrium will trade

off allocating agents from distributions in a revenue- or welfare-optimal way, which makes

the second claim difficult. Finally, inference must be from nontruthful equilibrium bids,

rather than agents’ true values.

To overcome these the challenges to establishing claims (1)-(3), we will exploit a sym-

metry inherent in the batched population environment: agents in each population are

i.i.d., and each serve a similar role in the stage feasibility environments. By forcing agents

in each population to compete with their peers, we can obtain rank information for each

agent’s value within their population, which we can use as a proxy for their quantile, allow-

ing our mechanism to effectively trade off allocation both within and across distributions

in an approximately revenue- or welfare-optimal way, achieving (2). Moreover, our mech-

anisms make each agent’s incentives resemble those they would experience in a position

auction against identically distributed competitors. In such environments, BNE easy to

characterize, solving (1), and inference has been well-studied in Chawla et al. (2014). In

particular, Chawla et al. (2014) give a procedure to infer distributional parameters which

will yield the optimal mechanism in our family, solving (3).

In Section 4.1, we formally define the family of mechanisms, surrogate ranking mecha-

nisms, that we will study. Surrogate ranking mechanisms can be implemented with either

winner-pays-bid or all-pay semantics, and in Section 4.2, we show that both implemen-

tations have a focal and well-behaved BNE. We derive the welfare- and revenue-optimal

surrogate ranking algorithms in Section 4.3.
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4.1. Surrogate-Ranking Mechanisms

We now describe the family of algorithms, surrogate-ranking algorithms, which will

serve as a base for our rank-based mechanisms in the population environment, and present

notation and concepts which will aid in reasoning about this family. These algorithms

treat each agent against others in their population, and uses this rank information to de-

termine allocations. We will consider a special case of such rank-based mechanisms, which

force agents to compete for surrogate values, which are input to an allocation algorithm

instead of the agent’s true value. Higher-valued agents will win higher surrogate values,

which will yield higher probability of allocation when input to a monotone allocation

algorithm. Formally:

Definition 27. The surrogate ranking algorithm (SRA) for the batched environment is

parameterized by nT surrogate values, denoted Ψi = {ψ1
i ≥ . . . ≥ ψTi } for each population

i, and a stage allocation algorithm x̂ that maps a profile of n surrogate values to a feasible

allocation x ∈ X . The algorithm on bids from each of the nT agents works as follows:

(1) For each population i and stage t, compute the rank r(i, t) of the bid of the agent

in population i and stage t with respect to the T − 1 other bids from population i.

(2) For each stage t, allocate to agents in stage t according to x̂(ψ
r(1,t)
1 , . . . , ψ

r(n,t)
n ).

As described in Section 2.1, we consider mechanisms that are defined by an alloca-

tion algorithm and a payment semantic. Our analysis will include the surrogate ranking

mechanisms (SRMs) with both winner-pays-bid and all-pay semantics.

In reasoning about surrogate-ranking algorithms, it will be useful to consider stage

algorithms that operate by assigning agents to surrogate values not just based on rank
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(as in Definition 27) but by other methods. In such algorithms, agent i’s surrogate values

are denoted by Ψi = {ψ1
i ≥ · · · ≥ ψTi }, and these are coupled with a stage allocation

algorithm x̂ which maps a profile of n surrogate values to a feasible allocation x ∈ X .

The following definition characterizes the outcome of such a stage allocation algorithm

when the profile of surrogate values is uniformly distributed.

Definition 28. For nT surrogate values, denoted Ψi = {ψ1
i ≥ . . . ≥ ψTi } for each

population i, and a stage allocation algorithm x̂ that maps a profile of n surrogate values

to a feasible allocation in X , the characteristic weights (w1
i , . . . , w

T
i ) for population i

are defined by calculating the allocation probability of each surrogate when the surrogates

of other populations are drawn uniformly at random, i.e., wji = E[x̂i(ψ
j
i ,ψ−i)] for each

surrogate j and uniform random ψ−i.

In what follows, we discuss several algorithms for assigning agents to surrogate values

which will induce uniform surrogate distributions. The agents in a mechanism based on

such an algorithm effectively compete for allocation probabilities equal to the character-

istic weights. The input distribution to the stage algorithm x̂ is jointly determined by

two factors: the rule used to select surrogate values, and the distribution of bids input to

this rule. Formally:

Definition 29. Given surrogate values Ψi = {ψ1
i , . . . , ψ

T
i } for agent i, a surrogate

selection rule for Ψi is a function σi mapping bids for i to surrogate values in Ψi.

Our analysis will focus on two particular surrogate selection rules (and their associated

algorithms). The sample ranking rule samples bids according to some distribution and

chooses a surrogate value based on the rank of agent i’s bid among the samples. The
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binning rule emulates the binning algorithms of the previous chapter and divides bid

space into T intervals of equal probability according to some distribution and maps a bid

in the jth highest interval to the jth highest surrogate value. Formally (with the subscript

for population i omitted):

Definition 30. Given distribution G and set of surrogate values Ψ, with ψ1 ≥ . . . ≥

ψT , the sample-ranking selection rule for G and Ψ draws T −1 samples from G, computes

the rank of r of input bid b among the T − 1 samples, and outputs surrogate value ψr.

Definition 31. Given distibution G, set of surrogate values Ψ with ψ1 ≥ . . . ≥ ψT ,

and partitioning I = {I1, . . . , IT} of G’s support into intervals of equal probability, the

binning selection rule for G and Ψ maps input bid b to ψj for the j for which Ij 3 b.

The surrogate ranking algorithm (Definition 27) implements the sample ranking selec-

tion rule with samples being drawn from the symmetric equilibrium bid distribution for

each population. If i’s bid is distributed according to the same distribution, then their

rank among the samples will be uniformly distributed. This property will in turn mean

that agents’ allocations are determined by their characteristic weights. Formally:

Definition 32. Given a distribution over bids G and a surrogate selection rule σ with

surrogates Ψ = {ψ1, . . . , ψT}, σ induces uniformity for G if Pb∼G[σ(b) = ψj] = 1/T for

all j ∈ {1, . . . , T}.

The following lemmas are immediate from the definitions.

Lemma 33. The sample ranking and binning surrogate selection rules for any distri-

bution induce uniformity for inputs drawn from that same distribution.
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Lemma 34. The composition of a stage allocation algorithm with a surrogate selection

rule that induces uniformity in its BNE bid distribution allocates to bidders according to its

characteristic weights. Specifically, a bidder from population i who is assigned surrogate

value ψji is allocated with probability wji .

4.2. Incentives

We now show that from each agent’s perspective, surrogate-ranking mechanisms hide

asymmetry that might be present in the stage settings. In particular, they induce a rank-

based position auction among agents from each population, forcing agents to compete for

the characteristic weights of their population’s surrogate values. With pay-your-bid or

all-pay payment semantics, they therefore inherit the equilibrium of rank-based position

auctions, which is shown to be unique in Chawla and Hartline (2013). Formally:

Theorem 35. For a monotone1 stage allocation algorithm x̂, a set of T surrogate

values Ψi = {ψ1
i ≥ . . . ≥ ψTi } for each population i, and their characteristic weights

wji for each i and j, there is a BNE in the winner-pays-bid (resp. all-pay) SRM where

for each population i, the agents in population i bid according to the unique BNE of the

i.i.d. rank-based winner-pays-bid (resp. all-pay) position auction with position weights

w1
i , . . . , w

T
i and value distribution Fi.

Proof. We argue from the perspective of agents in an arbitrary population i. Assume

agents in other populations are bidding according to the position auction equilibrium for

the characteristic weights of their populations. By Lemma 33, symmetric bid distributions

for each population induce uniformity for each population in every stage. Lemma 34 then

1We will see in Chapter 5 that assuming monotonicity is without loss.
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implies that the agent in population i who is assigned surrogate value ψji is allocated

with probability wji . Thus, the agents in population i bid according to the equilibria of

the rank-based winner-pays-bid (resp. all-pay) auction with position weights w1
i , . . . , w

T
i .

Monotonicity of the allocation rule implies monotonicity of the position weights; it follows

that the unique equilibrium of agents from population i (as guaranteed by Theorem 4)

assigns the agents to positions according to their values. We conclude that the prescribed

strategies are an equilibrium for agents from all populations. �

The equilibrium of Theorem 35 is unique under the natural assumption that agents are

not able to condition their strategy on the label of their stage. The uniqueness follows from

the fact that such an equilibrium is necessarily symmetric within each population, and

therefore induces uniformity. Hence, the equilibrium appears to agents in each population

as a position auction with position weights equal to the characteristic weights. The

symmetric equilibrium for such an auction is unique, by a straightforward application of

revenue equivalence (i.e. the second part of Theorem 2). This yields:

Theorem 36. The equilibria of Theorem 35 for winner-pays-bid and all-pay SRMs

are unique among stage-invariant BNE.

As the equilibrium of Theorem 35 is the unique equilibrium which is symmetric among

agents in a population, we will refer to it as the symmetric equilibrium of the winner-pays-

bid or all-pay SRM.
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Definition 37. In the symmetric equilibrium of the winner-pays-bid (resp. all-pay)

SRM, agents in each population i bid according to the unique BNE of the i.i.d. winner-

pays-bid (resp. all-pay) rank-by-bid position auction for the position environment with

position weights equal to the characteristic weights w1
i ≥ . . . ≥ wTi and distribution Fi.

The design of revelation mechanisms is facilitated by the fact that the assumed equilib-

rium has agents bidding their true values. Thus, if the outcome of the allocation algorithm

has good properties with respect to its input bids, those properties also hold with respect

to the agents’ values. Because the equilibria of surrogate ranking mechanisms are mono-

tone within each population, they assign agents in each population to surrogates in the

order of their values. This is the same allocation that would be achieved if the agents

bid their values. Thus, for analysis of welfare and virtual welfare, we are free to consider

the surrogate ranking algorithm on the true values of the agents. This serves as a sort of

“revelation principle” for the analysis of rank-based mechanisms.

Theorem 38. The allocation of the symmetric equilibrium of a surrogate ranking

mechanism is the same as the outcome of the corresponding surrogate ranking algorithm

on the true values of the agents.

More often than not, a mechanism designer who must design for many iterations of

an environment must choose allocations and payments for each iteration one-at-a-time,

rather than in a batched fashion. That is, they must design for an online version of the

iterated population environment, where they may select each iteration’s allocation and

payments using past bid data from each population in previous iterations.
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The surrogate ranking mechanism suggests a way to design mechanisms that use this

data. Samples from the past bid distribution can be used to calculate the rank of the value

of an agent in the present stage, as long as that agent’s bid is from the same distribution.

The surrogate ranking algorithm (Definition 27) for the batched environment obtained

these samples from the agents from the same population but in different stages of the

batched environment. The following algorithm for the stage environment relaxes the

assumption that the stages are batched and replaces it with direct sample access to the

(supposed) bid distribution. These sampled bids could be obtained, for example, by

previous iterations of the stage mechanism.

Definition 39. The surrogate sample ranking algorithm for the stage environment is

parameterized by nT surrogate values, denoted Ψi = {ψ1
i ≥ . . . ≥ ψTi } for each population

i, a stage allocation algorithm x̂ that maps a profile of n surrogate values to a feasible

allocation x ∈ X , and n bid distributions G1, . . . , Gn. The algorithm, on bids from each

of the n agents, works as follows:

(1) For each agent i, draw T − 1 samples from the bid distribution Gi.

(2) For each agent i, compute the rank r(i) of the bid of the agent with respect to the

T − 1 bids sampled from Gi.

(3) Allocate to agents according to x̂(ψ
r(1)
1 , . . . , ψ

r(n)
n ).

The analysis of Theorem 35 shows that if for all agents i, Gi is the bid distribution

for population i in the symmetric equilibrium of the surrogate ranking mechanism, then

it is a best response for agent i to bid according to that same equilibrium. In fact,

Theorem 36 implies that this is the unique such stationary point. To see this, assume
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there was another set of distributions {Gi}ni=1 with the property that the best response

in the winner-pays-bid or all-pay surrogate sample ranking mechanisms for {Gi}ni=1 was

for agent i to bid according to Gi. Note that this would also be an equilibrium of the

corresponding SRM. By Theorem 36, the symmetric equilibrium is the unique equilibrium

that is stage invariant. The following theorem summarizes this argument.

Theorem 40. For a monotone stage allocation algorithm x̂, surrogate values {Ψi}ni=1,

and the SRM symmetric equilibium bid distributions G1, . . . , Gn, bidding according to

{Gi}ni=1 is a BNE of the surrogate sample ranking mechanism for x̂, {Ψi}ni=1, and {Gi}ni=1.

Using the past T − 1 days a the source of samples according to the distributions

G1, . . . , Gn provides a solution to the problem of online mechanism design in the popula-

tion model.

4.3. Optimal Surrogate-Ranking Mechanisms

In this section we derive the optimal surrogate-ranking mechanisms for welfare and

revenue, assuming agents play the symmetric equilibrium. Since agents are ranked ac-

cording to their true values in this equilibrium, it suffices to optimize over the underlying

surrogate ranking algorithms instead. Consequently, we may use reasoning reminiscent of

the derivation of the optimal truthful binning mechanism for revenue in Chapter 3.

The free parameters for surrogate ranking algorithms are the choice of surrogate values

ψji for i ∈ {1, . . . , n} and j ∈ {1, . . . , T} and the choice of the stage allocation algorithm

x̂. To optimize these parameters, we consider the relaxed algorithm design problem of

maximizing a generic virtual surplus quantity subject to the constraint that the algorithm
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must be rank-based. We note that for monotone virtual value functions, there is an

obvious solution to this problem which happens to be a SRM.

Given a Bayesian population environment with distributions F1, . . . , Fn and T stages,

we define the rank-based algorithm design problem as follows: the designer must choose a

stage allocation algorithm x which takes as inputs the ranks rt = rt1, . . . , r
t
n of agents in

an arbitrary stage t within each of their respective populations and outputs a (possibly

randomized) feasible allocation x(rt) for that stage. As a constraint, x must be mono-

tone for each agent. The objective is to maximize E[
∑

t

∑
i φi(v

t
i)x

t
i(r

t)] for some given

virtual value function φi(·), where ranks are drawn uniformly for each population. (For

example, φi(v
t
i) = vti corresponds to welfare maximization.) Note that the restriction to

a single allocation algorithm across all stages is without loss of generality, as the stages

are symmetric - one may permute the labels of the stages uniformly at random before

running the algorithm.

The above optimization problem can be solved by inspection. Fixing an allocation

algorithm, the objective can be rewritten as
∑

t

∑
i E[φi(v

t
i) | rti ]xti(rt) by linearity of ex-

pectation. From this expression, it becomes clear that the optimal algorithm maximizes

the quantity
∑

i E[φi(v
t
i) | rti ]xti(rt) in every stage. Note that if φi(·) is monotone, then this

algorithm will be monotone as well, and therefore feasible.2 The above proves:

2 For simplicity, we do not consider non-monotone φi in what follows. Chawla et al. (2014) show how
to derive the optimal rank-based mechanism for such φi. Their procedure results in a surrogate ranking
mechanism and therefore extends the results of this section to the objective of revenue with irregular
distributions.
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Theorem 41. The virtual welfare-optimal rank-based algorithm for the batched pop-

ulation setting maximizes
∑

i E[φi(v
t
i) | rti ]xti(rt) in each stage. In particular, the welfare-

optimal rank-based algorithm uses φi(v
t
i) = vti , and for regular distributions, the revenue-

optimal rank-based algorithm uses φi(v
t
i) = vti −

1−F (vti)

f(vti)
.

Note that the rank-based algorithm design problem is a relaxation of the surrogate

ranking algorithm design problem; any surrogate ranking algorithm with a monotone

stage allocation algorithm is feasible. Moreover, the algorithm prescribed by Theorem 41

is a surrogate ranking algorithm. We therefore can conclude that this algorithm is optimal

among surrogate ranking algorithms.

Corollary 42. Assuming agents play the symmetric equilibrium, the welfare-optimal

surrogate-ranking mechanism uses surrogate values ψji = Ev∼Fi [v | r
j
i ] and allocation algo-

rithm x̂(v) = argmaxx̂∈X
∑

i vixi. For regular distributions, the revenue-optimal surrogate-

ranking mechanism uses surrogate values ψji = Ev∼Fi
[(
v − 1−F (v)

f(v)

)
| rji
]

and stage allo-

cation algorithm x̂(v) = argmaxx̂∈X
∑

i vixi.
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CHAPTER 5

Performance and Inference for Rank-Based Mechanisms

In Chapter 4, we defined surrogate-ranking mechanisms, a class of mechanisms for the

iterated population model in which agents compete with other agents from their same

distribution to be assigned surrogate values, which are used as inputs to an allocation

algorithm. The choice of surrogate values determines how the mechanism will trade off

allocation across distributions. In Section 4.3, we derived the optimal choice of surrogate

values: to maximize welfare, set ψji to be the expected value of the jth highest of T draws

from Fi, and to maximize welfare, choose the same expected order statistic of the virtual

value distribution for Fi.

In this chapter, we analyze the inference of these parameters, and derive performance

guarantees given (possibly noisy estimates of) these optimally chosen parameters. Since

the focal equilibrium in a surrogate-ranking mechanism with winner-pays-bid or all-pay

semantics is the unique BNE for the position environment each population perceives, a

straightforward application of the results of Chawla et al. (2014) will allow us to infer

the optimal surrogate values for welfare or revenue with low error. Moreover, we show in

Section 5.2 that estimation errors propagate to welfare or revenue in a controlled way.

To derive performance guarantees, we extend the analysis of surrogate binning algo-

rithms developed in Chapter 3 to surrogate ranking algorithms. The crux of our approach

is an analysis of the ability of rank-based mechanisms to compete with posted pricing.

Both welfare and revenue maximization require the designer to be able to discriminate
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against low-valued buyers. Posted pricing represents perfect discrimination: an agent buys

if their value is above a threshold, and goes unallocated if their value is below. A ranking

mechanism, which allocates the top k of T bidders, discriminates in value space, but does

so less precisely - rank is not always an accurate measure of value. We show that surrogate

binning algorithms can be thought of as distributions over few posted prices, and that

surrogate ranking algorithms can be thought of as distributions over rank-based k-unit

auctions. Consequently, a comparison of ranking to prices reduces the analysis of SRMs

to the binning analysis from Chapter 3. We will explicitly construct a surrogate-ranking

algorithm which approximates the welfare or revenue of any other allocation algorithm,

and which our optimal SRM by definition outperforms. This yields the following:

Theorem 43. For any monotone1 stage allocation algorithm x̂, there exists a surrogate-

ranking algorithm which attains a (1−O( 3
√
n/T ))-fraction of the welfare and virtual wel-

fare of x̂.

Combining the theorem above with Theorem 38, i.e., that the allocation of the sym-

metric equilibrium of a surrogate ranking mechanism is the same as that of the surrogate

ranking algorithm on the true values, we have the following corollaries.

Corollary 44. For any feasibility setting, the welfare-optimal surrogate-ranking mech-

anism in its symmetric equilibrium attains a (1 − O( 3
√
n/T ))-fraction of the surplus of

the optimal mechanism.

1The restriction to monotonicity is essentially without loss. Hartline and Lucier (2010) show how to
convert a non-monotone allocation algorithm to one which is monotone and obtains higher (virtual)
welfare. Their procedure requires access to the distribution over inputs to the algorithm, which we have
because the designer controls the choice of surrogate values.
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Corollary 45. For any feasibility setting, the revenue-optimal surrogate-ranking mech-

anism in its symmetric equilibrium attains a (1 − O( 3
√
n/T ))-fraction of the revenue of

the optimal mechanism.

A Prior Result: A weaker result follows from a theorem of Hartline et al. (2011).

In this paper, the authors consider an algorithm which can be interpreted as a surrogate

ranking algorithm built from an arbitrary stage allocation algorithm x̂. They show that

for agents whose values are distributed on the interval [0, 1], their mechanism has an

additive per-stage welfare loss of at most n/(4
√
T ). Because we derive the welfare-optimal

surrogate-ranking mechanism, we inherit this welfare guarantee. In particular, we have:

Corollary 46 (Hartline et al. (2011)). In any feasibility setting, if agents have value

distributions on [0, 1], then in the symmetric equilibrium, the welfare-optimal surrogate-

ranking mechanism loses at most an additive n/(4
√
T ) per stage with respect to the welfare

of the optimal mechanism.

We improve on this welfare guarantee in three ways. First, we derive a guarantee for

arbitrary distributions, even those with unbounded support. Second, our bounds will be

multiplicative. Finally, our bounds apply to revenue in addition to welfare.2

5.1. Inference

We saw in Section 4.3 that the optimal choice of surrogate values requires mild distri-

butional knowledge in the form of expected order statistics of the value or virtual value

2With the additional assumption that virtual values are bounded below by −φ, the guarantee of Corol-
lary 46 applies to revenue as well, with an additional factor of 1 + φ applied to the loss.
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function. We now discuss how to use the tools of Chawla et al. (2014, 2016) to infer the

optimal surrogate values from samples.

Chawla et al. (2016) consider inference of the expected order statistics of value and

virtual value distributions (i.e. the optimal surrogate values for welfare and revenue)

in i.i.d. position auctions with values distributed on [0, 1]. Because each population

of a surrogate-ranking mechanism inherits the unique BNE of the position environment

with that population’s characteristic weights, we may directly apply their procedure to

samples from a batched or online SRM with possibly suboptimal parameters to estimate

the optimal surrogate values. Their procedure only requires that for each population, some

pair of characteristic weights differs by at least ε, so that the equilibrium is nontrivial.

Denoting by P k
i the kth highest optimal surrogate value for revenue for population i, and

V k
i the kth highest optimal surrogate value for welfare for population i, we obtain

Corollary 47 (Chawla et al. (2016)). Consider a batched environment with T stages

and values drawn from [0, 1] for each population. Assume surrogate values for a winner-

pays-bid SRM are selected such that for every population i, there exists some j such that

the characteristic weights satisfy wj+1
i − wji > ε. Then given N samples of the batched

environment with T stages per sample, there exist estimators P̂ k
i and V̂ k

i satisfying:

E[|P̂ k
i − P k

i |] ≤ Θ

(
T√

min(k, T − k)

1√
N

log

(
T

ε

))

E[|V̂ k
i − V k

i |] ≤ Θ

(
T log T√

N
log

(
T

ε

)
+

T

Nε

)
A similar result holds for all-pay SRMs. It follows that as long as the initial choice of

surrogate values is not trivial, it is easy to infer better surrogate values and reoptimize
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the mechanism. Note that the convergence rates of the estimators of Chawla et al. (2016)

are faster than if one tried to infer the full value distributions, which would be required to

implement the optimal winner-pays-bid or all-pay mechanism by undoing the revelation

principle (as described in Section 1.4).

5.2. Propogation of Error

We now show that error in our estimates of the optimal surrogate values translates to

a loss in performance of the optimal surrogate ranking mechanism in a straightforward

way. The proof resembles that of Lemma 48: the expected revenue or welfare of a rank-

based mechanism is exactly its expected surplus with respect to the optimal surrogate

values. Small noise in these surrogate values can only cause the optimal surrogate-ranking

mechanism to misallocate by a bounded amount.

Lemma 48. Let Ψ̂ = {ψ̂ji }
j∈{1,...,T}
i∈{1,...,n} be estimates of the revenue-optimal surrogate

values ψji satisfying ψ̂ji ∈ [ψji − γi, ψ
j
i + γi] for all i and j. Let RevΨ̂ be the revenue of the

surrogate ranking mechanism using Ψ̂, and let RevΨ be revenue of the optimal surrogate

ranking mechanism, using Ψ. Then:

RevΨ̂ ≥ RevΨ − 2
∑
i

γi.

An analogous proposition holds for welfare.

Proof. Let x̂ be the allocation rule of the algorithm using the estimates Ψ̂, and x the

allocation rule of the algorithm using the true optimal surrogate values Ψ. Given a value

profile v, let rti(v) be the rank of agent i in stage t based on the value profile v. The
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expected revenue from x̂ is:

Ev

[∑
t

∑
i

E
[
φi(v) | rti(v)

]
x̂ti(v)

]
= Ev

[∑
t

∑
i

ψ
rti(vi)
i x̂ti(v)

]

≥ Ev

[∑
t

∑
i

ψ̂
rti(v)
i x̂ti(v)

]
−
∑
i

γi

≥ Ev

[∑
t

∑
i

ψ̂
rti(v)
i xti(v)

]
−
∑
i

γi

≥ Ev

[∑
t

∑
i

ψ
rti(v)
i xti(v)

]
− 2

∑
i

γi.

The first term in the final expression is simply the virtual surplus from x, completing the

proof. The proof for welfare is identical. �

5.3. Pricing Versus Ranking

For a mechanism to maximize welfare or revenue effectively, it must be able to discrim-

inate between agents with high and low values. To prove Theorem 43 we must show that

ranking mechanisms can do this effectively. We build towards this goal by first showing

that ranking mechanisms can approximate the simplest form of discrimination: posted

pricing. We will describe price-posting mechanisms in terms of the location of the price

p via its quantile q(p) = 1 − F (p). We in particular consider prices for which q(p) is an

integral multiple of 1/n. Formally:

Definition 49. The k/n-price posting algorithm allocates agents if and only if their

quantile is below k/n, for some integer k. This can be achieved by posting the price with

quantile k/n.
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We first show that price-posting can be approximated by ranking. Posting a price at

the quantile k/n will result in allocation to k of the n agents in expectation. The rank-

based equivalent enforces this quota pointwise, allocating the k highest-valued agents each

time.

Definition 50. The top k-of-n algorithm for n agents ranks agents by value and

allocates the k agents with the highest values.

As the law of large numbers might suggest, these two algorithms perform comparably

for large n when k is bounded away from the extremes (one and n− 1). Formally:

Lemma 51. For any distribution F , the top k-of-n algorithm attains a ρ(k, n)-fraction

of the welfare of the k/n-price posting algorithm with n agents. If F is regular, then it

attains a η(min(k, n − k), n)-fraction of the revenue of the k/n-price posting algorithm,

where

ρ(k, n) ≈ 1−
√

n

2πk(n− k)
and η(k, n) ≈ 1− 1√

k

(
n

n− k

) 3
2

,

with the error stemming from Stirling’s approximation.

Proof. We will explicitly characterize the worst-case distributions for each objective,

and analyze the per-agent contribution to each algorithm’s surplus. For notational con-

venience, we suppress the subscripts on functions which would refer to our agent.

Key to the analysis will be two formulae for the expected surplus of an algorithm,

in terms of its interim allocation rule x(·) and the distribution’s value function v(·). We

have that an algorithm’s surplus is:

(5.1) Eq∼U [0,1][x(q)v(q)] = Eq∼U [0,1][−x′(q)V (q)],
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where V (q) =
∫ q

0
v(z) dz, and the equality follows from integration by parts. An analogous

formula holds for virtual surplus, with v(q) replaced by the Myerson virtual value at q.

We will first analyze welfare, and then highlight the changes necessary for proving the

result for virtual surplus. The only real difference between the two objectives is the fact

that values are always positive, whereas virtual values may be negative. This changes the

nature of the approximation, as allocating the wrong agent becomes actively harmful to

the performance of the algorithm.

Welfare. We begin by normalizing the per-agent surplus of the price-posting mech-

anism to 1. Note that for the k/n-price posting algorithm, the interim allocation rule

is 1 until quantile k/n, and then drops to 0. It follows from equation (5.1) that our

normalization is equivalent to the assumption that V (k/n) = 1.

Next, we note that because v(·) is positive and decreasing, V (·) is increasing and

concave, with V (0) = 0. Let x(·) be the allocation rule of the top-k-of-n mechanism.

Given our normalization, the problem of finding the worst-case distribution then becomes:

min
V (·)

Eq∼U [0,1][−x′(q)V (q)]

subject to V (0) = 0

V (k/n) = 1

V (·) concave

V (·) increasing
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This program can be solved by inspection by noticing that there is pointwise minimal

function satisfying the constraints of the program: namely, the optimal V (q) is linear with

slope v(q) = n/k for q ≤ k/n, and constant at 1 for q ≥ k/n. This corresponds to the

distribution with k/n mass on the value n/k, and the rest on 0.

Having solved for the worst-case distribution, it remains to compute optimal value of

the objective. Note that the allocation rule for the top-k-of-n algorithm is

x(q) =
k−1∑
j=0

(
n− 1

k

)
qj(1− q)n−j−1.

Combining this with our knowledge of the worst-case distribution, we can easily compute

the per-agent surplus of the top-k-of-n mechanism. Omitting tedious computations, we

get the following formula for the multiplicative loss per agent:

LossW(k, n) = 1−
k−1∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
(k − i).

To obtain the bound given in the statement of the lemma, note that the following

sequence of inequalities holds:

LossW(k, n) = 1−
k−1∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
(k − i)

=
k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
−

k−1∑
i=0

(
n− 1

i

)(
k

n

)i(
n− k
n

)n−i−1

≤
k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
−

k−1∑
i=0

(
n− 1

i

)(
k

n

)i(
n− k
n

)n−i

=

(
n

k

)(
k

n

)k (
n− k
n

)n−k
.
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The result for welfare follows from applying Sterling’s approximation.

Virtual Surplus. We now adapt the above proof to virtual surplus. The main

difference will be the fact that the Myerson virtual value, denoted φ(q), can be negative.

We will additionally use the fact that the Myerson virtual value is the derivative of the

price-posting revenue curve. That is, φ(q) = R′(q) = d
dq
v(q)(1 − q). It follows that

cumulative virtual value has the convenient form R(q) = v(q)q.

As before, we normalize the virtual surplus from price-posting to 1. This corresponds

with setting R(q) = 1. Subject to normalization, we use properties of revenue curves

to derive the worst-case distribution for virtual surplus. We assume values are regularly

distributed, which implies that R(q) is concave. Moreover, since R(q) = v(q)q, we have

that R(0) = R(1) = 0. These properties yield the following program for the worst-case

distribution:

min
R(·)

Eq∼U [0,1][−x′(q)R(q)]

subject to R(0) = R(1) = 0

R(k/n) = 1

R(·) concave

Again, this may be solved by inspection. The worst-case R(·) is triangular, with its

apex at (k/n, 1). That is, on [0, k/n], R(q) has slope n/k, and on [k/n, 1], it has slope

−n/(n− k).
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Using the allocation rule of the top-k-of-n mechanism from the welfare proof, we can

compute the multiplicative loss per agent for revenue as:

(5.2) LossR(n, k) =
n

k(n− k)

k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
(k − i).

The following sequence of equations yields the result:

LossR(n, k) =
n

k(n− k)

[
k

k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
−

k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
i

]

=
n

(n− k)

[
k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
−

k−1∑
i=0

(
n− 1

i

)(
k

n

)i(
n− k
n

)n−i−1
]

≤ n

(n− k)

[
k∑
i=0

(
n

i

)(
k

n

)i(
n− k
n

)n−i
−

k−1∑
i=0

(
n− 1

i

)(
k

n

)i(
n− k
n

)n−i]

=
n

(n− k)

(
n

k

)(
k

n

)k (
n− k
n

)n−k

Applying Stirling’s approximation and noting symmetry about n/2 yields the result. �

We can further generalize Lemma 51 by comparing distributions over pricing algo-

rithms with the analogous distributions over top-k algorithms. As long as prices avoid

the extremes of the distribution, ranking performs well with respect to pricing.

Lemma 52. For any value distribution F , consider a distribution over k/n-price

posting algorithms for n agents, where the highest price is at quantile k/n and the lowest

price is at quantile k/n. The same distribution over corresponding top-k-of-n algorithms
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attains a ρ(min(k, n − k), n)-fraction of the welfare of the distribution over price-posting

algorithms. If F is regular, then the distribution over top-k-of-n algorithms attains an

η(min(k, n− k), n)-fraction of the price-posting revenue as well.

Proof. Lemma 51 implies that for each price in the distribution of the price-posting

algorithm, there is a top-k-of-n algorithm which approximates it and which appears with

the same probability. The approximation ratio of a distribution over pairwise approxi-

mations is at least the approximation from the worst pair. Note that the approximations

from Lemma 51 are symmetric about 1/2, and are worst for very low and very high

k. It follows that the approximation ratio is driven by the k/n- and k/n-price posting

algorithm. �

5.4. Performance Guarantees for Optimal SRMS

Lemma 52 shows that in simple settings, ranking can discriminate with almost as

much accuracy as pricing. We now extend this idea to the batched population model.

We compare the surrogate ranking algorithm with a uniform surrogate binning algorithm,

which, in the language of Section 4.2 composes the allocation algorithm x̂ with the binning

surrogate selection rule (Definition 31) in each stage.

Definition 53. For the stage allocation algorithm x̂, value distributions {Fi}ni=1, sur-

rogate values {Ψi}ni=1, and binning surrogate selection rules {σi}ni=1, the uniform surrogate

binning algorithm is given by computing x̃(bt) = x̂(σ1(bt1), . . . , σn(btn)) in each stage t.

We now show that uniform surrogate-binning algorithms can be well-approximated

by ranking algorithms. The allocation rules of such binning algorithms appear to agents
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as piecewise constant functions. Hence, each population i sees a distribution over k/T -

price posting algorithms. Moreover, in the batched population environment, we may rank

agents against their peers in the same distribution (as in a multi-unit auction) rather than

price, just as in Lemma 52. By ranking each agent and treating the agent with rank j as

if they were in the jth bin, we produce a surrogate-ranking algorithm. Lemma 52 implies

that this algorithm performs almost as well as the binning algorithm, provided that the

prices from the binning algorithm do not come from extreme quantiles. In particular, we

assume that k lowest surrogate values and k highest surrogate values are identical. This

will ensure that the comparison of our rank-based algorithm will only be to prices which

are not too extreme.

Theorem 54. For monotone stage algorithm x̂ and surrogate values ψ1
i ≥ ψ2

i ≥ . . . ≥

ψTi with ψ1
i = ψ2

i = . . . = ψki and ψki = ψk+1
i = . . . = ψTi for each population i, the

uniform surrogate ranking algorithm attains a ρ(min(k, T − k), T )-fraction of the welfare

of the binning algorithm. If distributions are regular, then the surrogate ranking algorithm

attains a η(min(k, T − k), T )-fraction of the binning algorithm’s virtual surplus.

To derive Theorem 54, note that by Lemmas 33 and 34, the surrogate-binning al-

gorithm allocates agents according to its characteristic weights. Moreover, we already

showed in Section 4.2 that surrogate-ranking algorithms also allocate agents according

to characteristic weights. Thus if the two algorithms use the same surrogate values,

these characteristic weights will be the same. Next, note that the surrogate-binning and
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surrogate-ranking algorithms appear to agents as distributions over pricing and top-k algo-

rithms, respectively, with the distributions determined by marginal characteristic weights.

Formally:

Lemma 55. Any uniform surrogate-binning (resp. surrogate-ranking) algorithm with

surrogate values {ψji }
j=1,...,T
i=1,...,n appears to agents in each distribution i as a distribution over

price-posting (resp. top-k) algorithms. The probability of offering the price with quantile

j
T

(resp. of allocating j units) is given by wji − w
j+1
i , where w0

i = 1, wT+1
i = 0, and wji is

the characteristic weight for ψji for j = 1, . . . , T .

Finally, Theorem 54 follows from applying Lemma 52. Notice that if ψ1
i = . . . = ψki ,

the uniform binning algorithm’s allocation rule on the first k intervals of distribution i’s

quantile space will be constant. In terms of distribution i’s randomization over posted

pricings, the highest nontrivial price offered has quantile k/n, and the lowest has quantile

k/n. These extremal quantiles drive the approximation guarantees relating pricing to

ranking and, thus, good approximation bounds can be obtained via Lemma 52 if there is

not much loss in restricting to binning algorithms that price at moderate quantiles.

5.4.1. Proof of Theorem 43

To prove Theorem 43, we note that our analysis of surrogate binning mechanisms in

Chapter 3 provides us with a uniform surrogate binning algorithm which achieves a close

approximation to the optimal welfare or revenue. In particular, let Q be the set of break-

points which equipartition each agent’s quantile space into T intervals. The resampling

algorithm for with bins defined by Q and k promoted bins is a uniform surrogate binning
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algorithm. For every choice k of how many bins to promote, then, we will obtain an

approximation result as a corollary of Lemma 19.

All that remains to prove the approximation result is to compose our lemmas and select

a value for the parameter k. First, note the binning algorithm’s surrogate values are the

same for the intervals [0, 1
T

], . . . , [k−1
T
, k
T

] and the intervals [T−k
T
, T−k+1

T
], . . . , [T−1

T
, 1]. It

follows that welfare and revenue loss from applying Theorem 54 are ρ(k, n) and η(k, n),

respectively. Composing this with our approximation result and setting k = (n/T )
2
3 yields

the theorem.
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CHAPTER 6

Conclusion

In this thesis, we have attempted to build a theory to study non-truthful mechanisms

explicitly from a design perspective. We identified some of the important characteris-

tics of settings where winner-pays-bid and all-pay semantics, two canonical non-truthful

mechanism families, perform well. These characteristics included distributional symme-

try, symmetry of feasibility structure, and ordinality. In such settings, rank-based mech-

anisms perform particularly well with non-truthful semantics, which we demonstrated

in the context of the iterated population environment. Continued work to understand

what properties of an auction setting are conducive (or not) to the design of nontruthful

mechanisms, as well as the development of methods for harnessing these properties, is

critically important for the development of a theory of mechanism design that aligns with

the realities of practical implementations.

In addition to performance and incentives, this work considered inference in non-

truthful mechanisms. Again, we identified properties of mechanisms, e.g. ordinality,

that facilitate inference, and designed mechanisms (and corresponding inference tools)

to take advantage of these properties. We have seen that the theory of non-truthful

mechanisms, especially the results of Dütting and Kesselheim (2015) suggest that non-

truthful mechanisms generally require data to perform well. The constraints of practical

mechanism design requires methods for making sense of bid data as well. Consequently,

a theory of non-truthful mechanism design must involve the use of data to parametrize
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and re-optimize mechanisms. We hope that this work sets the stage for further work in

this broad area of research.

There are several specific open problems left unsettled by the work in this thesis.

First, a key assumption in the iterated population model is that agents in each stage

are distinct, and unable to coordinate their strategies. In may practical applications,

e.g. advertising auctions, the same participants play in many stages. Consequently,

modifying our approach to accommodate agents who play in many stages is an interesting

direction that would make this work more realistic. Additionally, because the stages in

many iterated settings occur over time, there is a dynamic or learning aspect to agent’s

incentives. Consequently, understanding the performance of our mechanisms in learning

equilibria, e.g. Bayes coarse correlated equilibria, would be another step towards a more

realistic model. Indeed, understanding non-truthful mechanisms in Bayesian learning

equilibria generally is an under-studied topic which is of great importance to extending

the analysis of non-truthful mechanisms beyond delicate analyses of specific equilibria.

In most mechanism design settings, agents have some form of non-linearity in their

utility functions: risk-aversion, budgets, or even lexicographic preferences (e.g. Wilkens

et al., 2017) are common in practice. Understanding when and if the principles of non-

truthful mechanism design laid out in this thesis extend beyond the quasilinear setting

is another key direction for a more comprehensive and practical theory of mechanism

design.
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Proof of Lemma 23. Consider drawing N = mT − 1 samples from F . Note that

the expected value of the quantile of the (jm − 1)st sample is exactly j/T . Call this

value vjm−1, with quantile qjm−1. We will use Chernoff to bound the deviation of qjm−1

from its mean in terms of m. Specifically, note that for any ε ∈ (0, 1), the number of

samples with quantile at most j/T + ε is the sum of N iid Bernoulli random variables

with mean j/T + ε. Note that qjm−1 > j/T + ε only if at most jm − 2 samples overall

have quantile at most j/T + ε. This latter event is equivalent to the number of samples

with quantile at most j/T + ε deviating from its mean (which is (j/T + ε)(Tm− 1)) by

at least (j/T + ε)(Tm− 1)− jm− 2 =
(

1− jm−2
(j/T+ε)(Tm−1)

)
(j/T + ε)(Tm− 1). We may

bound the probability of this event using Chernoff to obtain:

Pr[qjm−1 ≥ j/T + ε] ≤ e
−Ω
(
(1− jm−2

(j/T+ε)(Tm−1))
2
(j/T+ε)(Tm−1)

)
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This bound is worst for j = 1. Using the bound for j = 1 yields:

Pr[qjm−1 ≥ j/T + ε] ≤ e
−Ω
(
(1− m−2

(1/T+ε)(Tm−1))
2
(1/T+ε)(Tm−1)

)

A similar approach can bound the probability that qjm−1 < j/T − ε. This occurs only

if at least jm− 1 samples have quantile at most j/T − ε. The latter event is equivalent to

the number of samples with quantile at most j/T − ε deviating from its mean of (j/T −

ε)(Tm−1) by at least jm−1−(j/T−ε)(Tm−1) =
(

jm−1
(j/T−ε)(Tm−1)

− 1
)

(j/T−ε)(Tm−1).

Chernoff yields:

Pr[qjm−1 ≤ j/T − ε] ≤ e
−Ω

((
jm−1

(j/T−ε)(Tm−1)
−1

)2

(j/T−ε)(Tm−1)

)

≤ e
−Ω

((
m−1

(1/T−ε)(Tm−1)
−1

)2

(1/T−ε)(Tm−1)

)
.

We may apply a union bound to obtain:

Lemma 56. Assume the following inequality holds:

(Tm− 1) min

((
1− m−2

(1/T+ε)(Tm−1)

)2

( 1
T

+ ε),
(

m−1
(1/T−ε)(Tm−1)

− 1
)2

( 1
T
− ε)

)
≥ Ω

(
ln
T

δ

)
.

Then the probability that qjm−1 ∈ [j/T − ε, j/T + ε] for all j ∈ {1, . . . , T − 1} is at least

1− δ.

This lemma implies Lemma 23.
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